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Testing for the existence of unit root is important because different asymptotic theory of
inference applies depending on whether the series has a unit root or not. In the dissertation,
several new tests for stationarity and trend stationarity, as well as a new test for unit root, are

developed. The new tests developed in the dissertation all have some properties superior to the

existing tests.

Tests for parameter stability also have power against the unit root hypothesis. We
examine the power of the CUSUM test and the parameter fluctuation test. The case of a break
trend and the issues concerning the selection of the break point are also discussed. We propose a
new adaptive estimator of the long run variance that improves the asymptotic power of the

tests. Our tests take stationarity as the null hypothesis.

We also propose a test for trend stationarity against the unit root that does not require
the estimation of the long run variance. Our test takes stationarity as the null hypothesis, and
it is consistent at the rate of the sample size. The asymptotic distribution of the test statistic

under the null is standard Cauchy.

In another chapter, we introduce a new transformation of the Dickey-Fuller statistic
that does not require the estimate of the long run variance. Qur new test is still consistent.
Finally, all of the new tests are applied to the extended Nelson-Plosser macroeconomic time

series.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Motivation

Ever since the publication of the influential study of Nelson and Plosser (1982) on the
unit root behavior of economic time series, there has been intense interest in econometric

modeling involving unit root processes.

The unit root behavior is hoth theoretically relevant and empirically important. A unit
root in certain economic time series is implied by some intertemporal models of economic
behavior: for example, marginal utility of consumption, cf. Hall (1978); stock prices, cf.
Samuelson (1973); foreign exchange rate, cf. Meese and Singleton (1983). Interestingly, the
absence of a unit root in linear combinations of certain economic time series (cointegration) is
also suggested by economic theory: for example, the spot price and forward price of a financial
asset, cf. Hakkio and Rush (1989); stock price and dividend, cf. Campbell and Shiller (1987);

labor income and consumption, cf. Campbell (1987).

The dissertation is concerned with testing for unit root and stationarity in time series.
Strictly speaking, the “stationarity” of a stochastic process requires that the underlying
probability measure does not change over time. But unless otherwise stated in this dissertation,
the “stationarity” of a time series only requires that it satisfies certain Functional Central Limit

Theorems, cf. Theorem 2.2.4.

The asymptotic theory of iuference invariably involves the use of various Central Limit

Theorems (CLT’s). Different CLT’s are used depending on whether the stochastic process has a
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unit root or not. In the case of stationarity, classical CLT’s are applicable. But in the case of a

unit root, Functional Central Limit Theorems (FCLT’s) need to be used.

The existing tests for unit root have several drawbacks. First of all, most of the existing
tests take the unit root as the null model and stationarity as the alternative model. This is fine
for testing economic theory that implies unit root behavior. As a test for economic theory that
implies stationarity (e. g. cointegration), it puts the theory at a severe disadvantage. Secondly,
the asymptotic theory requires the estimation of the long run variance, which may not behave
well in finite samples. Thirdly, the existing test for stationarity is consistent at a rate slower

than the sample size, which affects the asymptotic power of the tests.

1.2 Objective and Methodology

The purpose of this dissertation is to develop several new tests for stationarity and unit

root that have superior finite and large sample properties over the existing tests.

We are going to use the theory of weak convergence on metric spaces, cf. Billingsley
(1964). Using the theory of quadratic forms of normal random variables, Dickey and Fuller
(1979) established the finite sample and asymptotic distributions of their tests for unit root
under a restrictive I.I.D. normality assumption. As shown by Phillips (1987), the theory of
weak convergence can be applied to more general stochastic processes, for example, mixing

process.

1.3 Outline of the Dissertation

Chapter 1 is an introduction.

In Chapter 2, we briefly review the basic probability theory, introducing the concept of
a mixing process, and the Functional Central Limit Theorems (FCLT’s). Then we use the

FCLT’s to derive the asymptotic distribution of the Dickey-Fuller class of tests for unit root

i~
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with general deterministic trend. With this characterization of the asymptotic distribution of

the tests for unit root, we then review and contrast the existing tests for unit root.

There has been a large literature on testing for structural stability of regression
coefficients. The existing tests can be classified into three categories. The first is the CUSUM
tests using recursive residuals. The second is based on the fluctuation of parameter estimates
over subsamples. The third assumes that the coefficients evolve as a random walk over time; it
then tests the variance of innovations to the random walk being zero. Using results on spurious
regression, we show that tests for parameter stability also have power against the unit root
hypothesis, but an estimate of the long run variance is needed to implement the test. The
conventional method of estimating the long run variance impairs the power of the test.
Therefore, we propose a new adaptive estimator of the long run variance that enhances the
asymptotic power of the tests. Qur tests take stationarity as the null hypothesis. Monte Carlo

simulation is conducted to study the finite sample properties of the tests. This makes up

Chapter 3.

Using results on spurious regression and generalizing the Cauchy test of Bierens (1991a),
we propose a test for trend stationarity against the unit root that does not require the
estimation of the long run variance. Our test takes stationarity as the null hypothesis, and the
unit root as the alternative model. It is consistent at the rate of the sample size. So it should
be more powerful asymptotically than the existing tests for stationarity. Since the asymptotic
distribution of the test statistic under the null hypothesis is standard Cauchy (Student t
distribution with one degree of freedom). tabulation of critical values by simulation is not
necessary. The asymptotic distribution under the null hypothesis does not depend on the
alternative model against which the null is tested. Therefore our new test avoids most of the
problems with the traditional tests. Monte Carlo simulation is conducted to study the finite

sample properties of the tests. This inakes up Chapter 4.
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The Phillips-Perron transformation of the Dickey-Fuller test statistics for unit root
requires an estimate of the long run variance. Because the long run variance is the sum of an
infinite number of autocovariances, its estimate has to be truncated in finite samples. This
truncation can make the finite sample estimate unreliable. In Chapter 3, we propose a new
transformation of the Dickey-Fuller statistic that does not require the estimate of the long run
variance. Yet our new test is still consistent. The finite sample properties of the test are

investigated with Monte Carlo simulation.

In Chapter 6, all the tests developed in the dissertation are applied to the Nelson and
Plosser (1982) macroeconomic time series extended up to 1988. In Chapter 7, we summarize

and conclude.

1.4 Notational Conventions

We will follow the notational conventions in the literature, cf. Phillips (1987) and
Phillips and Perron (1988). In particular, note the following. RK stands for k dimensional
Euclidean space. W(r) stands for standard Brownian motion on the unit interval [0, 1}. =
denotes weak convergence. L. denotes convergence in probability. %3 denotes convergence
almost surely. All integrals are taken over the interval [0, 1}, unless otherwise specified;
integrals with respect to the Lebesgue measure such as j'},rW(r)dr and f(l,f(r)dr, are often
written as [tW and [f. The index for summation is t, and the range of summation is from 1
to T. All limits are taken for T — 0. Upper case letters, such as {Y,}, denote a stochastic

process; lower case letters, such as {y,}, denote a realization of {Y,}. A functional is understood

to be a function of a function.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Box and Jenkins (1976) systematized time series model identification using sample
autocorrelations and partial autocorrelations. Their method is intuitive and easy to follow.
Their prescription for detecting nonstationarity is,

failure of the estimated autocorrelation function to die out rapidly might logically suggest
that we should treat the underlying stochastic process as nonstationary [...], but possibly as

stationary in [first difference], or in some higher difference (p. 175).

They further emphasized that,

it is the failure of the estimated autocorrelation function to die out rapidly that suggests
nonstationarity. It need not happen that the estimated correlations are extremely high even
at low lags (p. 175).

The concept of “die out rapidly™ is very vague: its unwise use can lead to incorrect treatment of
the series of interest, i. e. differencing the series while it is already stationary, or assuming
stationarity while it needs to be differenced. Because the asymptotic theory of inference for
stationary process and nonstationary process is very different, the incorrect treatment of the

time series of interest can lead to serious problems.

For the simple AR(1) model.

(2.1.1) X, = pX, + 4, u, ~ 1D(0, ¢?)
the least squares estimate of p is,

(2.1.2) =S X X /S ,X2 .

7]
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We have the following asymptotic results on p depending on the true autoregressive coefficient

p.

(i) If |p| < 1, then X, is stationary. For fixed x4, VT(p-p) is asymptotically normal, cf.
Mann and Wald (1943).

(ii) If p = 1, then X has a unit root. The asymptotic distribution of T(p-1) is non-normal
and can be expressed as a functional of a Brownian motion, cf. White (1958), Dickey
and Fuller (1979), Phillips (1987).

(iii) If |p| > 1, then X, is explosive. For xy=0, |p|T(b-p) is asymptotically Cauchy, cf.

White (1958).

Therefore the asymptotic distribution theory is very different depending on whether p is inside,

on or outside the unit circle.

All parameter estimators are functions of the data. Therefore to study the asymptotic

behavior of p given in (2.1.2), first we nced to study the asymptotic behavior of X,. Let X, be

generated by,

(2.1.3) X =pX g +u,, p=1
then
(2.14) X, = Sy + X,

Given that X, is a random variable not related to t, the asymptotic properties of X, is the same

as that of Zf_,u;. In what follows, we assume Xy = 0 for simplicity.

Define the quantity,

Xir = Sl r € 0, 1)

where [-] here means the integral truncation operator. For fixed T and r, X[Tr] is a random

variable; for fixed T, X[Tl_] is a random function in r. So in order to develop an asymptotic
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theory for X[Tr], we need to study random functions.

In order to understand the literature on unit root, some knowledge of FCLT’s is
necessary. In Section 2.2, we first review the basic probability theory on metric spaces, and
introduce the FCLT’s and the concept of a mixing process. In Section 2.3, we discuss the
representation of deterministic trend. In Section 2.4, we derive the asymptotic distribution of
the Dickey-Fuller class of tests for unit root under general conditions. In Section 2.5, we review

the literature on unit root tests.

2.2 Review of Probability Theory

In the following, we present soine basic probability theory on random elements of metric
spaces; then the theory will be specialized to establish the FCLT’s which is the building block of

asymptotic theory for unit root processes.

2.2.1 Some Introductory Probability Theory

Let (,%,P) be a probability space, and (¥,§) be a measurable space. We are going to

study mappings from Q to 0.

Definition 2.2.1
A mapping X: Q — ¥ is F|§G measurable if

{weQlx(w) €EG}=F € ,¥YG € G
If X is ¥|G measurable, then X is called a random element on (Q,%,P).

The set G is called the image of the set F under the mapping X, denoted as G = X(F), and F is
called the inverse image of G under the relation X, denoted as F = X"{(G). If (¥, ) is implicit,

we simply say X is F-measurable, or measurable. Note that the definition of a measurable

-1
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mapping does not require the existence of a probability measure, but for the measurable

mapping to have an interpretation as a random element, a probability measure is necessary.

If we are to study the convergence of a series of measurable mappings from Q to ¥, we
need a measure of the distance between two elements of the space ¥. Therefore ¥ is endowed
with a metric p, so that (¥,p) foris a metric space. With the metric p, open and closed sets on
(¥,p) are well defined. Crucial to our study of a random element is the minimal Borel field
containing all open sets in the metric space. We denote this Borel field as B. Its elements are
called Borel sets, denoted as B and the boundary of B is denoted as dB. Throughout, we take {
= B, We see that the metric p is related to random elements in two ways: first p affects the
measurability of each mapping through B: second p affects the convergence of random elements
through the definition of a distance. A weaker metric allows much easier convergence, cf. Bierens
(1992b, Chapter 9). Since the Borel field B is larger for a weaker metric, a weaker metric makes

Borel measurability more difficult, cf. Pollard (1984, Chapter 4).

To emphasize the domain space, the range space, or both, of a random element, the
random element can be called a random element on the probability space (,%,P), a random
element of the measure [metric] space (¥,§) [(¥,p)], or a random element from the probability
space (Q,%,P) to the measure space (¥,§). Here are some examples of metric spaces and random

elements.

(i) If ¥ = R, then X is a random variable; if ¥ = R¥, then X is called a random vector,

(2-2.1) p(x, ¥) = [SK (v
is the Euclidean distance which is the basis for least squares estimation.

(ii) If ¥ is a space of functions on @ C RE, then X is called a random function. Two spaces of

IFor other choices of G, see Pollard (1984). Note that a metric p is not necessary for the
definition of a random element as long as the Borel field § is well defined.

8
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functions on © = [0, 1] we shall use later on are the space of continuous functions, denoted as
C[0,1], and the space of functions with discontinuities of the first kind at most at countably
many points, denoted as D[0,1]. The metric,

(2:2.2) plx, ¥) = sup, ¢ ol X(s)}¥(s) |

is the uniform metric. The uniform metric is suitable for most studies. But for some studies,
the uniform metric is too conservative. Another metric on C that is going to be used in Chapter
4 is,

plxy) = [ [x(r)-y(r)ldr.

(iii) For ¥ = D[0,1], another more involved metric is often used. Let A be the space of strictly
increasing continuous real functions A(s) on [0, 1] with A(0) = 0 and A(1) = 1, A c Cjo,1].

p(x, y) is defined as the infimum of those ¢ for which there is A € A such that,

(2.2.3a) SUP; ;¢ o)<t | IN[(AE)-A(s))/(t-s)} | < €
and
(2.2.3b) sup, g 1) | X(s)-¥(As)) | < e

This is the famous Skorohod metric. denoted as p¥, cf. Bierens (1992b, Chapter 9). Think of
A(s) as a monotonic transformation of time [0, 1} keeping the end points unchanged, then the
two inequalities say that as long as the slope of A{(s) is close to one, that is, as long as the time
scale is not distorted too much by the transformation, the two functions stay close on different
time scales. Note that, fixing A(s) = s, the “Skorohod” metric is reduced to the uniform metric,
so the uniform metric dominates the Skorohod metric. We see that the time transformation
involved in the Skorohod norm is designed to ~discount™ the importance of discontinuities in the

elements of D. For the definition of another metric on D, see Billingsley (1968, p. 113).

In general, the distance between x and y, the elements of (¥,p), is the “length” of the
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“difference” between x and y. So the metric space is often endowed with scalar muitiplication,
vector addition and a dot product, the metric space is turned into a normed linear dot product
space (or vector space), cf. Dhrymes (1989, p. 64). The relationship among them is,

plx, y) =[xy |f = dot(x-y, x-y).

For example, the metric spaces we will use, R¥, C[0, 1] and DJ0, 1] are all normed linear dot
product spaces. For this reason, the Skorohod (uniform or sup) metric is also called Skorohod

(uniform or sup) norm.

Given the metric space (¥,p), various modes of convergence can be defined. Let X, and
X be a series of random elements. Then X, is said to converge to X in probability, denoted as
X, 5 X or plim X, = X, if for any ¢ > (.

lim,_ P(we€ Q] p(x,(w) x(w)) <€) =1

X, is said to converge to X almost surely, denoted as X,_a-'-’s " X, if,

P(we Q| lim, _ x(w)=x(w)) = 1.

Almost sure(ly) is equivalently called almost everywhere (a. e.) or almost certainly (a. c.). Note
that the limit in plim is a regular algebraic limit in the Euclidean space R, while the limit in a.

s. convergence is a limit in the metric space (¥,B).

In order to define the convergence in distribution, we need a concept on (¥,p) similar to
the cumnulative distribution function in R. To this end, define a real function u: B — R for a

given random element X,

#(B) = P(X'(B)), VB € 3.

It can be shown that u is a probability measure on (¥,B). It is called the measure induced by
the random element X. Then the measure u will serve in a similar role to the cumulative

distribution function.

10
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Definition 2.2.2 A series of probability measures s, on (¥,B) is said to converge to u, denoted as

py = py if lim,___p,(B) = pu(B), VB € B with p(dB) = 0.

The condition u(0B) = 0 is similar to the restriction that the convergence of distribution
functions only holds at the continuity points of the limiting distribution function. Note that the
limit in the definition is the regular limit in Euclidean space R. Now we can define the

convergence in distribution of random elements.

Definition 2.2.3 Let {X;}{2, and X be random elements on (2,%,P), and {#,}2, and p be the
corresponding induced probability measures on (¥,B); then X, is said to converge weakly

to X, denoted as X, =X, if TR TS

As mentioned earlier, the OLS estimator involving unit root processes is a function of the unit
root process, so given the asymptotic distribution of X,, we also need to know the asymptotic

distribution of functions of X,. To this end, we have the following theorem:

Theorem 2.2.1 (Continuous Mapping Theorem, CMT)
Let {X,} and X be random elements on (Q,%,P), p be the probability measure induced by
X, and ¢ be a Borel measurable mapping from the metric space (¥,p) to the metric space
(¥*,p") such that ¢ is continuous on a Borel set ¥, C ¥, with p(¥,) = 1. Then ¢(X,) =
$(X).

Proof: Billingsley (1968, Theorem 5.1, .30).

Therefore weak convergence is invariant under continuous transformations. Two measures of

the dependence between two Borel fields are defined as follows:

Definition 2.2.4 Let G and 36 be Borel fields in ¥, § C &, ¥ C ¥, define

86 1) = SUP (G ¢ 41 ¢ Jp(Gy>0p IPHIG) = P(H))

11
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oG, %) = sup ¢ g ¢ 36y IPIGNH) = PG)P(H)]

where P(H|G) = P(HNG)/P(G)

They are equal to zero if all the events in § and 36 are independent. To study the dependence

between random elements, we need the following concept.

Definition 2.2.5 Let X be a random element on (2,%,P); then the Borel field generated by X,
denoted as F(X), is the minimal Borel field that contains all sets of the form

(we|x(w)€EB)eF, VBB

Note that F(X) C F, actually all sets of the form {X !(B) | B € B} make up a Borel field, so

F(X)= {(weQ| X(w)eB)|B € B} = {X'B) | Be B}.

That is, the invérse images of the Borel sets in B forin a Borel field in Q, cf. Dhrymes (1989,

Proposition 4, p. 12) for the general case or Bierens (1992b, Theorem 1.1.1) for the case of ¥ =

Rk

Definition 2.2.6 For a series of random clements {X,} on (, ¥, P), let
qfoo = F(--+, xt-p x;);

FE = F(X,, Xpypr )

¥t is the Borel field generated by the history of X, prior to (and including) time t, Fg° is the
Borel field generated by the future of X, after (and including) time t. However the union of
countable Borel fields 2 F(X,;, -+ X,.;» X,) is, in general, not a Borel field. So Bierens
(1992b) has defined F* as the minimal Borel field containing U2F(Xy; =+ Xipr Xy)- Fois

defined similarly.

If G and 3 are the Borel fields generated by two random elements, then ¢(§,36) and

a(§,J6) measure the dependence between the two random elements. Two measures of the serial
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dependence, the mixing coefficients, of a series of random elements {X,} are defined as follows:

Definition 2.2.7 Let
#¢(m) = Supt¢(‘.ff°°, qfim)‘
a(m) = sup,a(Ft ., Folm)-

If lim_,  #(m) = 0, then X, is called ¢-mixing (uniform mixing);

If lim, _ a(m) = 0, then X, is called a-mixing (strong mixing).

They both measure the dependence among random elements at least m periods apart. Since
#(m) > a(m), ¢-mixing implies a-mixing. The rate at which ¢(in) or a(m) approaches zero
defines their sizes. If ¢(m) = O(m™). for any A > p, then ¢(m) is said of size p. Similarly if
a(m) = O(m"\) for any A > p, then a(m) is said of size p. A stochastic process X, is ¢- (a-)
mixing of size p if it is ¢- (a-) mixing and ¢(m) (a(m)) is of size p>. The mixing coefficients are

related to the well-known autocovariance of a time series through the following theorem:

Theorem 2.2.2 Let Eu, = Eu, ., = 0.
(i) If Euf < oo, Euf_‘_m < 2 and u, is ¢-mixing then

|Euguy | < 26(m)/4(Eu)!/3(Eu2, )12

(i) If Efuf| < oo, E|u,'+m|‘3 < 0, 8 > 2, and u, is a-mixing, then

|Euyuy 4ol < 2(2'/24 Da(m) P2/ @Y Ee2) VE, 184,

Proof: White (1984), Corollary 6.16, p. 148.

2Some authors have preferred to call it mixing of size -p.

13
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2.2.2 Brownian Motion and Functional Central Limit Theorems

The asymptotic theory for unit root processes often involves functionals of a Brownian
motion on the unit interval. With the theory of weak convergence on metric spaces, the

Functional Central Limit Theorem can be proved. First we define the Brownian motion.

Definition 2.2.8 Let W be a random function from (Q,%,P) to (C,p), where p is the uniform
metric, such that,

(i) W(0) = 0;
(i) W(t)-W(s) ~ N(0, (t-s)). V t.s € [0, 1], s < t;
(i) W(t,)-W(s;) and W(t,)-W(s,) are independent, Vi,s; € [0,1),i=1,2,
8, < t; <5y <ty
Then W(t) is called a standard Brownian motion (or a Wiener process).

Therefore by definition, the standard Browanian motion has independent normally distributed
increments, with variance increasing proportionally with time. It is standardized to be zero at
time zero. Note in particular that W(1) ~ N(0, 1). W has a continuous path: W € C[0, 1).

The probability measure on C induced by the Brownian motion is called the Wiener measure.

As an exercise on Brownian motion, we present the following theorem which is useful for

calculating the covariance between functionals of Brownian motion.

Theorem 2.2.3 For any deterministic continuous functions f and g on [0, 1], for any = € [0, 1],

(1) E( 3dW ] 5gW) = J 3fedr

(ii) E([3W [5gW) = [Z00)( [ sets)sds+ [ Tg(shrdsldr + [ Li(r)[ [ Fg(s)sdsldr.

14
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Proof: Note that Brownian Motion \W has independent increments,

ifr #s

rifr=s

E[dW(r)dW(s)] = {0
Therefore
E[W(r)W(s)] = min(r, s);
(i) E(J3dW [ Tgaw) = [ 3f(c)] f Je()EAW(r)dW(s)]] = [ Fi(r)g(r)dr;
(if) E(JofW [ 5gW) = [§ ] §f(r)e(s)E[W(r)W(s)dsdr
= 30 [ 56(s)EIW (1) W(s)Jds+ [ Tg(s)E[W () W(s)ldshr
+ JH()[] §e(s)E[W (r)W(s))dsdr

= [51(r)[ [ Eeg(s)sds+r [ Tg(s)dsldr + [ LE(r)[ [ Zg(s)sds]dr. o

With the theory of weak convergence of random elements, we now study the asymptotic

behavior of the partial sum,

(2.2.4) Xrg =S, el g

=0.ref0, T

where for fixed t, u;: Q + R is random variable on (Q,%,P). For fixed T and 1, X[Tr] is either
the sum of random variables or zero. so is a random variable itself. But for fixed T, X[Tr] is a
random function on [0, 1]. Furthermore, for fixed T and fixed w € Q, X,(w) is right continuous,
with finite left limits, and the number of discontinuities is T, so X[Tr](w) € D[0,1]. First we

impose some restrictions on u,.
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Assumption 2.2.1 Let {u,}7Z, be a series of random variables on (Q,%,P)

(i) E(u) =0, V t;
(ii) suptElull’3 < oo for some 3 > 2;
(iii) 0% = limp_ E[(1/NT)EL u,)% 0 < ¢? < oo

(iv) either 8 > 2 and u, is ¢-mixing with mixing coefficients ¢(m) satisfying

T 16(m) 1P < oc;

or § > 2 and u, is a-mixing with mixing coefficients a(m) satisfying

Eﬁﬂa(m)l'z/'j < x.

Condition(ii) controls the degree of heterogeneity or limits the probability of outlier occurrence.
Conditions (iii) and (iv) control the serial dependence in the series. As noted by Phillips (1987),
there is a tradeoff between the probability of outliers (represented by 3) and the degree of serial
dependence (represented by a(m) or o(m)) as indicated by the inequality in (iv). o2 in (iii) is
called the long run variance of u,. The following theorem says that the standardized partial

sum converges to a Brownian motion.

Theorem 2.2.4 (Functional Central Limit Theorem, FCLT)
Let X[Tr] be defined as in (2.2.4), and let u, satisfy Assumption (2.2.1). Then

;l—%;x[m = W(r), r € [0.1).

Proof: Herrndorf (1984).

The functional central limit theorem is also called the invariance principle. Note that X[Tr] €

D[0, 1], but W € C{0, 1]. Applying the CMT to the FCLT, we have,

16
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Theorem 2.2.5 Let f be a continuous real function on R; let AX, satisfy Assumption (2.2.1).

Then

() TEL KT YV2X jo) = [LE(W);
(i) TIZL, f(t/THT/2X fo) = [LW.
Proof: (i) Bierens (1992b, Lemma. 9.2.1); (ii) Bierens (1991a, p. 4).

The continuous function for CMT in (i) of the above theorem is the composite function,

o(x) = [ oflx(t)],
and that in (ii) is the composite function,

o(x) = [HE(t)x(t).
The asymptotic distribution of the OLS estimate of the first order autoregressive coefficient with
a unit root also involves the asymptotic distribution of E;sz,._lu,‘; for this we have the

following theorem.
Theorem 2.2.6 Let AX, = u, satisfy Assumption (2.2.1). Then
(i) TEL X, u /o = [AWdAW + (1/2)(1-02/0%) = (1/2)[W(1)*-02/0?.
(ii) If f is a continuous real function on R, then
28Tt/ T fo = [5EAW, relo, 1]
where 02 = limp_ TS EuZ.
Proof: (i) Phillips (1987, Theorem 3.1(b)): (ii) Bierens (1991a, Lemma 1).

Note that the integral in (i) is a stochastic integral. The equality is derived using Ito’s Lemma

by which

17
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dW? = 2(WdW+dt),
so
JWAW = (1/2)( fdW? - [dt) = (1/2)[W(1)%-1].
The mapping ¢(X) = J'},X(r)d,‘((r). X € Cfu. 1], is not continuous, so we cannot apply the
CMT to FCLT, cf. Phillips (1987). In contrast, the mapping ¢{X) = [3f(r)dX(r), X € C[0, 1},

is continuous; therefore result (ii) is a direct application of the FCLT and CMT.

In particular, note that if
f(t/T) = TN/ T The c€R,
then the asymptotic distribution [Je!™"°dW in Theorem (2.2.6)(ii) is an Ornstein-Uhlenbeck

process. This stochastic process has been used extensively in the study of near-unit root

processes, cf. Phillips (1987), Chan and Wei (1987).

It is easy to see that, if function f in "Theorems 2.2.5(ii) and 2.2.6(ii) is discontinuous at
a point in (0, 1) but with finite left and right limits, then the theorems still hold but with

piecewise integral on the right hand side. This result is required to do breaking trend analysis.

2.3 Representation of Deterministic Trend

Given T observations of a time series, call it yT, then it forms a point in the Euclidean

T can be written as a linear combination of the basis of RT. The most common

space RT. y
basis is formed by the column vectors e, i = 1, 2, -+, T, where the jth element of ; is given by
the indicator function I(i=j). This set of basis vectors {e;, e,, --+, e} defines the conventional
coordinate system in Euclidean space RT. Another basis is formed by the set of column vectors

T i = 1,2 .-, T, where the jth element of 7, is ji'l. This set of basis vectors {1, 7, -++, 77}

forms the basis for polynomial time regression. The difference between statistics and linear
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algebra on vector space is that iu statistics a point in RT can be expressed as the sum of a point
in an Euclidean space of much lower dimension (k) and a random error. If k is not substantially
lower than T, then the statistical description of the data is called overfitting. There are many
orthogonal bases in RT, but here we discuss only two of them. The first is orthogonal
polynomials in time for polynomial time trend. The second is the Chebishev polynomials for a

much weaker time trend, cf. Bierens (1992a).

2.3.1 Polynomial Time Trend

Polynomials in time have been the simplest and most popular representation of
deterministic trend in time series. At least the linear trend can be rationalized by a constant
increment. The following regression, often called detrending, is usually estimated,

(2.3.1) Y, = by + tby + t?by + -+ + t*b, + e, =1(t)b + e,

where £(t) = (1, t, --+, t¥), b = (bg, by, +++ by)!. The OLS estimate of b is,

b = [Sf(e) ()] ()Y,

Let Dy = diag(1, T, ---, Tk), and then it is trivial that,

(2.3.2) (1/T) D[SH(L)'[(t)]DF — [ 1.

If e, satisfies Assumption (2.2.1), then by Theorem 2.2.6 (ii),

(2.3.3) (1/NT) DE[Ef(t)e,] = o [dW.
Therefore,
(2.3.4) NTD(b-b) = o[ [ ][ [ fdW].

Note that the k! order polynomial in time can also be written as,
(2.3.1) Y, = f(t/T)b" + e,

where b* = (by, by /T, -+-, b /T¥). Then (2.3.2)-(2.3.4) are respectively,
0 ¥l k

19
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(2.3.2)' (I/T)[EM/TY /T — [11,
(2.3.3) (1/NT)[E(t/T)e] = o [ fdW,
(2.3.4) VT(b™-b") = of [ €11 }{ [ fdW].

Therefore if the polynomials in time are expressed in the form of f(t/T), the asymptotic theory
is much easier to handle, since we do not have to bother with the Dy matrix. For this reason,

from now on we will adopt this representation of the deterministic trend, and continue calling

the function [a+(t/T)b] a linear trend.

By Theorem 2.2.3, the asymptotic covariance of YT(b*-b*) is az[jlf'fj'l. In the variable
addition approach to testing for stationarity against unit root, we need to orthogonalize the
covariance matrix of the parameter cstimates. There are two equivalent ways of doing this.
The first is to orthogonalize the covariance [ ['f]"1, the other is to orthogonalize the regressors.
It turns out that for the representation and proof of the asymptotic theory, it is much easier to

orthogonalize the regressors.

2.3.2 Orthogonal Time Polynomials

The orthogonal time polynomials can be constructed as in Hamming (1986, Section

26.6). They are defined as follows. Let

(2.3.5a) Por(t) =1

(2.3.5b) pra(t) =t - 5L

(2.3.5¢) P () = (L = ay)py 1(t) — Bapg 1(t)

(2.3.5d) psp(t) = (t — aa)Pz'T(t) - ﬂspl,T(")
20
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Z(t/T)pf, p(t/T) _ S(/T)piq ot/ TIp;.2 1(t/T)
Zpf;,r(t/T) . Tpia,1(t/T)

where o; =

, fori =2, 3.

The polynomials p; 1(t/T), i= 0, 1, 2 and 3, as constructed above, are exactly orthogonal for t

=1,2,+ T. It can be shown that, when T — o0,

ay = 1/2, 3, - 1/12,
g - 1/2, 35 = 1/15.

Then as T = oo, for t = [Tr}, r € [0, 1],

(2.3.62) Po,(t/T) = qpfr) = 1

(2.3.6b) Py (t/T) = qy(r) = r—1/2

(2.3.6c) P2t/ T) = qpr) = (r=1/2)% - 1/12
(2.3.6d) pa(t/T) = qs(r) = (r—1/2)% — (3/20)(r—1/2)

which are a system of orthogonal functions on the interval [0, 1]. The orthonormal polynomials

are constructed as,

(2.3.7) pip(t/T) = py 1(t/T)/\TpZr(t/T), i=0,1,23.

Note that p;':T(t/T), i=0,1,2 3, are a class of orthonormal elements in RT. Now we run the

orthonormal regression,

3
(2.3.8) yo =X bipr(t/T) + e,

Denote the coefficient vector as b, and we have the following theorem:

Theorem 2.3.1
For the orthonormal polynomial regression (2.3.8),

(i) if e, = u, satisfy Assumption 2.2.1, then
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(b=b) = o(JdW, [qidW, [q3dW, [q3dW)’ ~ N(0, o?1,);
(i) if Ae, = u, satisfy Assumption 2.2.1, then
T b=b) = o(J W, [q}W, [q3W, [qzW)’

q;(r)

,I Jq¥(r)dr

Proof: Since the regressors are orthonormal,

where qi'(r) = ,1=0,1,2,3.

(b-b) = Xe = (Sp3 r{t/Te,, Spi p(t/Tey, Tp31(t/Tey, T03.(t/Tey)'-

By the definition of the Riemann integral,

SEipFr(t/T) &= [ da?, i=0,1,23.

(i) Under Hy, e, = u,, by Theorem 2.2.6(ii),

TY28p, 1(t/T)u, = [qdW, i=01,23.

Therefore,
pr,T( t,/T)u‘

£prr(t/The, = oy
' =p; 7{t/T)?

_ T'll")Spi'T(t./T)ut

- NT TS0, e/ T)?

_, Jaaw

[of

= [qMdW, i=0,1,2,3.
It is easy to show that the above weak convergence for i = 0, 1, 2, 3 also holds jointly.
(b=b) = o( fdW, [qjdW, [q3dW, [q3dW)".

Furthermore, using Theorem 2.2.3(i) and the orthonormality of qf, it is trivial that,

o( [dW. [qidW. [q3dW, [q3dW)’ ~ N(0, o21,).

(ii) Under H,, e, = Ej‘_:luj, using Theorem 2.2.5(ii), it is immediate that

[
(O
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T'Ep;(t/Tle, = o [ g W, i=0,1,23.

It is easy to show that the above weak convergence for i = 0, 1, 2, 3 also holds jointly. n ]

Note that qj(r), i = 0, 1, 2, 3, form a system of orthonormal functions in C[0, 1. The
coefficient estimate b in (i) has an orthogonal covariance matrix; therefore it is very easy to

construct x2, Cauchy and t statistics.

2.3.3 Chebishev Polynomials

Bierens (1992a) has used linear combinations of Chebishev polynomials to represent any

nonlinear trend. They are defined as follows. Fort=1,2, ..., T, let,

pO'T(t’) = 1'
Py, (t) = V2eos[kn(t-1/2)/T), k=12 .- T-1.

It is easy to show that the polynomials Py t(t), k =0, 1, -+, T-1, are orthogonal for fixed T and

t=1,2,-- T, cf. Bierens (1992a). It is trivial that, with k fixed as T — oo,

P 1(t) — \Zcos(krr),

where r is defined through t = [Tr]. For k = 0, I, 2, .-, the limit functions, \2cos(krr), are a

class of orthonormal functions in C[0. 1].

— e S ———

As an application of the FCLT and the CMT, we derive the asymptotic distribution of
the unit root test with a general deterministic time trend. The results of Phillips (1987) without
an intercept, Phillips and Perron (1988) with an intercept or a linear time trend, and Ouliaris,
Park and Phillips (1988) with polynowmial time trend are all specializations of our general

theorem.
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Theorem 2.4.1 Let AX, satisfy Assuniption 2.2.1, {(r) be a continuous function on [0, 1], p be

the OLS estimate of p in the following regression equation,

(2.4.1) X, ={(t/T) + pX,; + ¢, t=23,---, T.

Let t,_, be the t-statistic for p = 1. Then

(2.4.2) T(p-1) = [JAWT[AWAW + A = 7]
= [JAW [ EWAW + X;
tpy = (0,/0) JSWAW + A= g)/[ [AW*2]1/2
= (0,/0) [ [AW=dW + A)/[[ iw=2}/2
where A = (1/2)(1-02/02), n = [[3Wf(r)de]{ [ fr)E(e)de] [ ] 3(r)'dW], W*(x) is the projection
residual of Brownian motion on f(r).

Proof: It is trivial that

pep =[S =L

where X7, is the linear projection residual of X, ; on f(t/T). But

Xy =Xy — (/THEN/TY /T SR/ TY X,

so X}, is a continuous function of X,_; and Ef(t/T)'X,_ ;. Since

T3/2S8(t/TYX,, = o [} ()W
T Mt /T)'f(t/T)) - [ (r)'f(r)dr
TISi(t/T) - [ f(r)dr

then
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(2.4.3) T"/za-lx[-m = W(r) = f(0)[ [} (o) f(r)de]? L)W = W(r).

By Theorem 2.2.4

T2 25X = [iw=2

Similarly,

T! '25.‘)(;'_1ut = T'la"ZSXt_lu,_
— TV 2672132, f(t/ T[T IS8/ T £t/ T) DL/ T) u,)
(2.4.4) = [IWdW + X — [[AWRDO[[ ] £(r)'€(r)de) 2 [ 36(x) dW).

Therefore,

T(p-1) = [JEWY[[AWAW + A — [[AWHOI[] S ) 8r)de) 2 ] 3Cr)'d W)
= [[AW I [IW=dW + A].

The proof for the t-statistic is similar. |

Let X{ be the linear projection residuals of X, on f(t/T); if we had estimated a first
order autoregression using the detrended series X7,

(2.4.5) Xi =pX{, +e

then we would have had,

(2.4.6) T(p-1) = [JAW AW dW" + )]

which is the same as (2.4.2), since [W~d\W = [W*dW=. This procedure of detrending first and
then doing first order autoregression has been used by Stock and Watson (1988) and Bierens

(1991b).

Note that no matter what deterministic trend f(t/T) is included in regression equation
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(2.4.1), under the unit root hypothesis AX, is assumed to be as in Assumption 2.2.1, that is,

unit root without drift. If the unit root process has a drift,

(2.4.7) X, =4+ X +u,. p#EO

then as a data generating process, Equation 2.4.7 specifies that,

f(t/T)=1,0=p,e,=u,p=1

but (2.4.7) can be rewritten as,

(2.4.7) X, =Xg + ut + Zi_qu;

Therefore the deterministic component is a linear trend (with random intercept Xg). It is
crucial for 2.4.3 that X{, does not have any deterministic trend; therefore adequate detrending
is a prerequisite for valid unit root test, cf. Sclunidt (1988), Campbell and Perron (1990). Asa

regression equation, Equation 2.4.7 should account for the deterministic linear trend.

It is trivial that both 7 and j are invariant to the value of # in Equation 2.4.7. So the
test in the theorem is also a test for the unit root process,
X, = f(t/T)6 + Ej‘:ﬂ‘j

against the trend stationary process,

X, = {(t/T)8 + u,.

2.5 Review of the Existing Unit Root Tests

If Box and Jenkins made the time series modeling into an industry, then Dickey and
Fuller made unit root testing into a profession. Dickey (1976), Fuller (1976) and Dickey and
Fuller (1979) statistically formalized the notation of a unit root, and proposed several statistical
tests for unit root. In the jargon of Box-Jenkins, the null model is that y, has a unit root, i. e.
y, is ARIMA(0,1,0), and the alternative model is that y, is stationary, i. e. y, is ARIMA(1,0,0).

The two test statistics Dickey and Fuiler proposed are the normalized bias T(p - 1) and the t

26
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statistic for p = 1, call it 7. The asymptotic distribution is derived under the assumption of u,
being IID normal, which is very restrictive. As Dickey and Fuller (1979) have shown, the
asymptotic distributions of the test statistics are non-normal but they can be expressed as
functionals of a Brownian motion. Thus they have to be calculated by simulation. The critical

values can be found in Fuller (1976).

To test for the null of ARIMA(p-1,1.0) against the alternative of ARIMA(p,0,0), the
regression equation needs to be augmented with (p-1) lagged differences in y,. The augmented
Dickey-Fuller (ADF) = statistic still follows the same asymptotic distribution as in the simple
IID case. To test the null of ARIMA(p-1,1,q) against the alternative of ARIMA(p,0,q), the
mixed ARMA process needs to be approximated by an infinite order AR process, so the number
of augmenting lagged differences needs to increase with the number of observations at a
controlled rate. The corresponding ADF 7 statistic has the same asymptotic distribution as in

the simple IID case, cf. Said and Dickey (1984).

The results of the ADF test may be contradictory with different numbers of lagged
differences. The power of the test may also be substantially reduced if a large number of
augmented terms are included. Therefore there is a need for an alternative testing strategy that

is invariant for a general stationary process.

Our review of the literature on unit root tests is aimed at providing a basis for
developing new tests, rather than aimed at providing a guideline for empirical application. For
the latter purpose, see the excellent reviews by Diebold and Rudebusch (1990), Jolado, Jenkins

and Sosvilla-Rivero (1990), and Campbell and Perron (1991).

2.5.1 Phillips and Perron’s Extension of the Dickey-Fuller Test

If u, is a general stationary (or mixing) process, then the asymptotic distribution of the

Dickey-Fuller test depend on the unknown correlation structure of u,, cf. Theorem 2.4.1.

o~
-
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Specifically it depends on the unknown long run variance of u, which in turn depends on the
sum of autocovariances of u, at all lags. Phillips (1987), and Phillips and Perron (1988)
nonparametrically corrected the Dickey-Fuller statistics for the unknown correlation structure of
u,. Thus their test for unit root can be conducted using the Dickey-Fuller statistics as if u,
were IID normal. The nonparametric correction uses results in statistics on estimating the
spectral density at frequency zero. More importantly, Phillips and Perron used the theory of
weak convergence in the proof of the asymptotic results, substantially relaxing the unduely
restrictive assumptions of Dickey and Fuller. Through these and later works of Phillips and
coauthors, the method of the theory ‘of weak convergence became popular in theoretical

econometrics. Bierens (1992b) provides a step by step treatment of the theory of weak

convergence.

The asymptotic distributions of the Phillips and Phillips and Perron test are

simplifications of those in Theorem 2.4.1.

2.5.1.A Examples
(i) For the Phillips (1987) test, the regression equation is,

Xe=pXp g +e

The asymptotic distributions are as in Theorem 2.4.1 with W* = W and n = 0.

(ii) For the Phillips and Perron (1988) test, if the regression equation includes only an intercept,

X,=a+pX_ | +e

then

f(r) =1, W™ = W - [W is the demeaned Brownian motion, n=W(1)[W.

iii) For the Phillips and Perron (1988) test, if the regression equation also includes a linear
g

[
o
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trend,

X, =a+b{t/T)+ pX,., + e
then
f(r) = (1 1), W =W - (4-6r) JW — (12-61) [tW
n = 12[[rW-(1/2) [ W][(1/2)W(1)- [W]+W(1) [W.
W* above is called the detrended Brownian motion.

(iv) For the Ouliaris, Park and Phillips (1988) test, the regression equation includes a time

polynomial of order k,

X, = bg + by(t/T) + -« + b(t/T)* + pX,; + e,
then

f(r) = (Lr--1%), W* and 7 are as given in the theorem.

For this class of tests, the nuisance parameter o2 in A is consistently estimated by one of the
kernel methods, among which the Newey and West (1987) estimator is very popular. For

detailed treatment of the estimation of 62, see Chapter 3.

(v) For the Perron (1989) test, the regression equation includes a break in the intercept,

X, = by + ¢gD,(7) + by(t/T) + ¢,

where D(7) = 0if t < [T7], and 1 if t > [Tr]. The function f in Theorem 2.4.1 is given by

f(r) = (1, I(r > 7), r). The cases of a break in the slope or in both the intercept and the slope

can be treated similarly.

2.5.1.B Limitations of the Traditional Approach to Unit Root Testing

(i) The asymptotic distribution is nonstandard.
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The asymptotic distribution involves functionals of Brownian motion, and therefore is
nonstandard. The asymptotic distribution has to be calculated by simulation. Given the

available computing technology, this is of course not a big problem.

(ii) The asymptotic distribution depends on the alternative model.

Interestingly, the asymptotic distribution of the test statistics depends on the alternative
model against which the unit root model is tested, as is shown in the previous subsection. The
following models have been investigated as alternative models to the unit root model and the
corresponding asymptotic distributions have been calculated by simulation.

(a) (i) Stationarity with zero mean, (ii) stationarity with nonzero mean, and (iii) linear
trend stationarity; Fuller (1976) has three sets of critical values.

(b) Stationarity around time polynoimial; Quliaris, Park and Phillips (1990) have four sets
of critical values for a (2", 34, 48 5'h) order polynomial of time.

(c) Stationarity around breaking trend; Perron (1989) has twenty seven sets of critical
values for the cases of a single break in the intercept, a break in the slope of the linear
trend, and a break in both the intercept and the slope of the linear trend for nine
locations of the break.

(d) More flexible nonlinear trend; Bierens (1992a) has 80 sets of critical values for the case

of trend being approximated by Chebishev polynomials of order up to 40.

(iii) Unit root is taken as the null model.

The unit root model has been taken as the null model. As a test for economic theory
which suggests the presence of unit root behavior against alternative theories, it puts alternative
theories at an extreme disadvantage. As an extension to the unit root testing, the test for
cointegration also takes no-cointegration as the null model. As a test for some economic theory

which suggests cointegration among economic time series, the test takes as the null hypothesis

30
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that the theory is false. This is counter-intuitive, since before starting out testing the theory,
the investigator must believe that there is some truth in the theory, otherwise he would not
bother testing it with real data. Of course, given the problems witl? the power of any test, there
is some conceptual problem with taking any model as the null model. This is the problem with

the classical approach to inference.

(iv) The power of the tests is low.

Simulations show that the Dickey-Fuller test and the Phillips-Perron test have low
power to distinguish the stationary processes with large AR components from a unit root
process, and have substantial size distortion for the unit root processes with large MA

components, cf. Schwert (1989).

(v) The estimate of the long run variance is needed.

The long run variance is usually estimated using results on estimation of spectral
density at the origin with various window choices, the most popular of which are the Bartlett
window, the Parzen window, and the Quadratic window, cf. Priestley (1981). Some of the
methods guarantee nonnegativity of the estimate. For econometric applications, see Newey and
West (1987), and Andrews (1991). Since the long run variance depends on the sum of
autocovariances at all lags, given limited data, some truncation has to be made. The
accumulation of the higher order autocovariances that are truncated may still be substantially
large for some stationary processes.  Although the estimate is heteroskedasticity and
autocorrelation consistent, the convergence to the probability limit can be slow, creating

problems in finite samples.

31
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2.5.2 Test for Unit Root by Variable Addition

2.5.2A The Variable Addition Approach and the y? Test of Park

Variable addition has been used as a model specification test. Specifically the residual
from the regression model is regressed on some variables (“the added variables”) in the
information set, and then the significance of the coefficients on the added variables is tested.
Significance of the added variables indicates model misspecification, cf. Pagan (1984). However

insignificance of the coefficients on the added variables does not rule out other forms of model

misspecification.

Due to the difference in the persistence of shocks to stationary and nonstationary
processes, the cross moments between the time series and the time trend have different orders of
magnitude under stationarity and unit root, cf. Theorems 2.2.5 and 2.2.6. If the time series of

interest is regressed on some superfluous (irrelevant) trending regressors, for example a time

trend:

(2.5.1) X, =at +e,

the OLS estimate of parameter a is,

(2.5.2) i = EX,t/Tt2

If X, satisfies Assumption 2.2.1, then & is T3 % consistent for a = 0; if AX, satisfies Assumption
2.2.1, then a is T'/2.consistent for a = 0. So the OLS estimate of the superfluous coefficients
behaves differently under stationarity and a unit root. Park (1990) proposes to use the properly
standardized F-test for the insignificance of the superfluous coefficients as a test for unit root.
When properly adjusted for nuisance parameters as Phillips and Perron (1987) did, the resulting

F-test has an asymptotic x? distribution under the null of stationarity.

Let Y, be generated by the following model,
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(2.5.3) Y, = by + by(t/T) + - + b(t/T)* + X,.

If we run the following regression,

(2.5.4) Y, =bg+ b (t/T) + - + b, (t/T)k
+ b (/THF 4o by (/TR 4 g

then the regressors ((t/T)¥*1, -+, (t/T)¥*9) are superfluous. Let b be the OLS estimate of the
parameters, F be the regression F statistic or the Wald statistic for the insignificance of
(by FETEITN . Jrq)' . Under the unit root hypothesis, AX, satisfies Assumption 2.2.1,

(l/ﬁ)(f)k.*.p sy Bk-*-q), = O'hl*-l Ig'(r)'W
(2.5.5) (1/T)aF = ([ W2 [W=2)/ [W*2,

where
g°(r) is the residual of a linear projection of g(r) = (k1 k42 L rk'*'q) on f(r),
f(r) = (L, r, -+ 1),
W* is the Brownian motion detrended with f(r),
W** is the Brownian motion detrended with (f(r) g(r)),
M* = [ge™'g".
If X, is stationary, then

VT(byy1r -+ Bryq) = oM* ! [g*(r)dW ~ N(0, o?M* 1),

(2.5.6) aF = (Bpyps o By 2SO/ TV E (/D (bjegrr -+ by’
= (02/02)x2,
where &Z is the OLS estimate of the variance of e,.
Taking the stationarity as the null hypothesis, the test statistic is defined as

Py = (62/6%)qF.
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Then under stationarity, P = \é \While under the unit root, &% = Op(mT) where mq is the
lag truncation parameter in the long run variance estimation; therefore, (my/T)Pyp = 0,(1).

Thus the P test is consistent at rate (T/mr).

The variable addition approach of Park can be summarized as follows: (i) the
asymptotic distribution under stationarity is well known; (ii) stationarity can be taken as the
null model; (iii) the specification of deterministic trend can be very flexible; but (iv) the
construction of the test requires spectral estimation of the long run variance and the asymptotic

power is affected.

2.5.2B The Variable Addition Approach and the Cauchy Test of Bierens (1991a)

The OLS estimate a of the superfluous time trend in (2.5.1) is asymptotically normal
with variance proportional to the long run variance, but the rate of convergence to the
asymptotic distribution is different under stationarity and unit root. If another quantity can be
constructed that also has an asymptotic normal distribution with a variance that depends on the
long run variance proportionally, then the quotient of the two asymptotic normal quantities,
after orthogonalization and standardization, is asymptotically standard Cauchy. This is the
approach adopted by Bierens (1991a). Bierens’ approach shares the first three features of Park’s
approach. But the advantage of the Bierens' approach is that it does not require the estimation

of the long run variance.

2.5.3 Higher Order Autocorrelation and Unit Root

If the time series has a unit root, then the autocorrelation function is equal to one at all
lags. Hasza (1980) derived the asymptotic distribution of the sample autocorrelation at finite
lags for finite order ARIMA process. Bierens (1991b) extended the results of Hasza to the case

where the first difference of the series is a mixing process. Let the regression equation be,
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X, = er,-p + u,.

For fixed and finite p, T(p-1) is similar to the Dickey-Fuller test statistic for unit root, but its
asymptotic distribution depends on the unknown truncated long run variance when u, is not a
martingale difference series. In order to get rid of the nuisance parameter, the lag length p in
the regression is allowed to increase with the sample size T at a controlled rate, i. e. p =
o(TI/ 3). Bierens used the results to construct a test for unit root which is asymptotically more
powerful than the Phillips and Perron tests. The asymptotic distribution is the same as that of

the Dickey-Fuller test. Both the case of an intercept and the case of a linear trend are treated.

In the context of the variance ratio test for random walks, Richardson and Stock (1989)
derived asymptotic theory when the lag length increases proportionally to the sample size, p =
O(T). However they noted that in this case, their test statistic is inconsistent. Separately

Bierens has indicated that it is possible to construct a consistent unit root test with p = o(T)3

2.5.4 Nonlinear Trend Stationarity and Unit Root

In Bierens (1992a), the nonlinear trend is approximated by a set of Chebishev
polynomials introduced in Section 2.3. First the series is detrended by linear time trend, and
then it is detrended by a weak nonlinear trend which is approximated by a linear combination of
a set of Chebishev polynomials. Finally the test statistic is constructed using the detrended

series.

2.5.5 Discussion

Theorem 2.4.1 states that the asymptotic distribution for unit root test can be
conveniently characterized as a family of distributions. In the case of testing for unit root

against stationarity with a zero mean, the asymptotic distributions are functionals of Brownian

3Private communication.
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motion. In the case of stationarity with a nonzero mean or the case of trend stationarity, the
asymptotic distributions can be obtained simply by replacing the Brownian motion with the

demeaned or detrended Brownian motion.

For general mixing processes, all the distributions in unit root testing rely on asymptotic
theory. Each different test relies on a different aspect of the asymptotic theory. The finite
sample properties of each test depend on the quality of approximation of that aspect of the
asymptotic theory that the test relies on. A good test should have small or no size distortion,

good power, and be easy to calculate and convenient to use.

36
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CHAPTER 3

SPURIOUS REGRESSION, PARAMETER INSTABILITY AND UNIT ROOT

3.1 Introduction

Regression estimates of parameters involving stationary processes are consistent under
certain conditions. Regression estimates of parameters involving unit root processes are spurious
except in the case of cointegration, cf. Phillips (1986). Under certain conditions, the spurious
estimates of the parameters converge to nondegenerate random variables, rather than to fixed
constants. Therefore, tests for parameter instability also have power against the unit root

model?.

There has been a large literature on structural change, partly because the economic
systems are under the attack of shocks of various nature, e. g. depression, war, surges in oil
prices, and changes in weather. Prominent tests for parameter instability include the classical
CUSUM test of Brown, Durbin and Evans (1975), the recent parameter fluctuation test of
Ploberger, Kramer and Kontrus (1989, hence PKK), and the random walk test of Nabeya and
Tanaka (1988). The CUSUM test relies on the residuals of the regression, the fluctuation test
relies on a sequence of parameter estimates over the subsamples, while the random walk test
relies on the Lagrangian Multiplier principle. Kwiatkowski, Phillips, Schmidt and Shin (1992)

have developed a test for stationarity similar to the random walk test for parameter stability.

In this chapter, we develop tests for stationarity using the CUSUM test and the
parameter fluctuation test. Note that the power of our test relies on the fact that under the

alternative of unit root, the parameter estimates behave as if the true parameters were unstable.

4] thank Nathan Balke for this observation.
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Therefore, our test does not distinguish between true parameter instability and unit root, e. g.
Perron (1988, 1989). In order to distinguish breaking trend from unit root, the breaking trend
should be included in the regression as part of the maintained assumption. The proofs for the

theorems in section 3.2 are straightforward applications of the theorems in Chapter 2, and thus

they are omitted.

3.2 Spurious Regression, Parameter Instability and Unit Root

3.2.1 Introduction
The null model is that the series Y, is stationary,

(3.2.1a) Hg: Y, = u;, u, ~ Assumption (2.2.1)

and the alternative model is that Y, has a unit root,

(3.2.1b) H,: AY, ~ Assumption (2.2.1).

From the invariance principle, the quasi-sample mean Y(7) = [T1']'IE£'£’i]Yt behaves differently
under Hy and H,,

(3.2.2a) under Hy, TV?Y(7) = o7 'W(7),
(3.2.2b) under Hy, TY2¥(r) = o7l [IW.

Therefore under stationarity, td 2\-'(7') approaches zero, while under H, it converges to a
nondegenerate normal random variable. Define

_ [T 5
(3.2.3) S(r) = e [Y(r) = Y(1)].

Then we have Theorem 3.2.1.

Theorem 3.2.1

(i) Under Hy, S(r) = W(r) - TW(l) = WO(r), the Brownian Bridge;
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(i) under H,, S(7)/T = [IW - 7 [LW.

Note that S(r) is invariant to a linear transformation of Y,, so we could have included an
intercept in equation (3.2.1a). The nuisance parameter o needs to be estimated consistently.

One choice is the Newey-West estimate &2 defined as,

- -1 .
(3.2.4) 6= (1/T)sf‘;?(mT_l) KG/m)Z g Ul

where k(j/my) = j/myg, mp — 00 as T — o0, but mp = o(TI/ %), Note that the controlled rate
at which mp approaches infinity can be greater than the original Newey-West rate, cf. Bierens

(1992b). Denote the resulting test statistic as $(r). We have,

Theorem 3.2.2

(i) Under H,, S(r) = W(r) - TW(1) = WO7), the Brownian Bridge;
0

(ii) under Hy, $(7)/(T/mq) = [FW - 7 [IW.

After regressing Y, on an intercept, the statistic sup {S(7)| is the CUSUM test using OLS
T €[0,1]

residuals. The statistic is also the fluctuation test of the regression parameter, since the two

tests are the same with an intercept as the only regressor. As a test statistic, other functions of

S(r) are also admissible. For example, (sup  S(7) - igtio 1 S(r)), cf. Lo (1991). Note that due
] Tew

refo
to the estimation of o2, the $(r) test is consistent at the rate (T/ mr), instead of at the rate T.
Park (1990) and Bierens (1991a) explored the variable addition approach to test for
stationarity. The variable addition approach recognizes the superfluous nature of the variable
addition (the true value of the parameters being zeros), but the parameter estimates on the

maintained trends cannot be used in constructing the test. Here the approach using the

parameter stability test only recognizes the stability of the parameter, be it zero or not. The use
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of fewer (or no) superfluous regressors may improve the power of the test. Traditional tests for
unit root only use the full sample result, while the parameter stability tests uses the information

in the fluctuation of the underlying process within the sample. Therefore the parameter stability

test may have superior power.

3.2.2 The CUSUM Test Using OLS Residuals

3.2.2A. The Test Statistic

The most interesting competing models for most macroeconomic time series are trend
stationarity versus unit root with drift. In this section, we construct a test for stationarity with
a general deterministic time trend. Let the models of interest be,

(3.2.5) Hy: Y, = f(t/T)b + u,, u, ~ Assumption (2.2.1)

(3.2.6) H;: Y, = f(t/T)b + X,, AX,; ~ Assumption (2.2.1).

Let e, be the OLS residuals of the following regression equation,
Yo = f(t/T)b + €.

Define

(3.2.7) &(r) = T[T,
Then we have
Theorem 3.2.3

(i) Under Ho, TV2¢(r) = o [W(r) - [[501[LPT2[f3PdW]}

(ii) under Hy, T'2¢(ry = o [ [§W — [[500] 300 30W]]

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that if f(t/T) = 1 (an intercept), this theorem collapses to Theorem 3.2.1. A test

for stationarity can be based on functionals of (NT&(7)/é), e. g. the CUSUM type of test®

CU = rrgalf‘l_rll(ﬁf(r)/aly
or the range over standard deviation (R/S) test,
RS = [, Tew/e ojn, , YTew/e],

where 7 is called the trimming parameter. We will study the properties of both tests.

3.2.2B. Simulated Critical Values

Table 3.2.1 is the simulated asymptotic distribution for the cases of no trend and a
linear trend respectively. The simulated null distribution under linear trend stationarity lies to
the left of that under nonzero mean stationarity. Formally, the null distribution under nonzero
mean stochastically dominates (FSD) that under linear trend in the first degree. Specifically, for
the case of an intercept only in the regression and no trimming (7 = 0),

P(CU < 1.207) = 0.90, P(CU < 1.333) = 0.95, P(CU < 1.605) = 0.99,

P(RS < 1.563) = 0.90, P(RS < 1.697) = 0.95, P(RS < 1.960) = 0.99;
for the case of a linear trend and no trimming,

P(CU <0.810) = 0.90, P(CU < 0.881) = 0.95, P(CU < 1.019) = 0.99,

P(RS < 1.455) = 0.90, P(RS < 1.572) = 0.95, P(RS < 1.828) = 0.99.

3.2.2C. Simulation Results

The simulation results on the empirical size and power of the CU and RS tests with an
intercept are collected in Tables 3.2.2. For the case of white noise (p = 0 and § = 0), the sizes

of both tests are close to the nominal size. But as the value of p increases, there is more and

5Stock (1992) uses a class of transformations of the CUSUM statistic in designing a
Bayesian rule for deciding whether a series is 1(0) or I(1). The CUSUM statistic, as a test for
stationarity, is mentioned but not pursued. The CUSUM test also serves as a vehicle for
experimenting with the new long run variance estimator to be introduced in the next section.
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more overrejection if the Newey-West estimator is used, but there is not enough rejection if the
QS estimator (with prewhitening\recoloring) is used. The reason is that the QS estimator with
prewhitening\recoloring is more precise; the long run variance estimate used in the denominator
is large if p is large; therefore, the test statistics are small in absolute value. Since the Newey-
West estimator has a window width/truncation parameter, the long run variance is
underestimated when p is large; therefore, the test statistics are large in absolute value. Because
of this underestimation, the power of the tests is fairly good using the Newey-West estimator,

but very poor using the QS estimator.

Table 3.2.3 contains the simulation results for the case of a linear trend. The results are

similar to the case of an intercept; the above discussion still applies here.
3.2.3 The Fluctuation of the Recursive Estimate of Trend Coefficients

3.2.3A. The Test Statistic

Let b(7) be the OLS estimate of b using only the first {Tr] observations, then

(3.2.8) b(r) - b = S/ Tt/ T ELIE L/ The,)
where e, = u, under Hy and e, = X, under H,. We have,
Theorem 3.2.4

(i) Under Hg, NT(b(7) - b) = o[ [ 3] [ [ 5EdW];

(ii) Under H,, (1I/NT)(b(7) - b) = o[ [] f’ﬂ 5w

So under Hg, b(r) is consistent for b. As in PKK (1989), our test statistic will be based on

functionals of the following quantity,

[TT]

S(r =L £(t/T)L/T)?b(r) - b(1)], 7 € (0, 1).
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Its asymptotic distribution is given below.
Theorem 3.2.5
(i) Under Ho, $(r) =  [[3¢0Y2 [[[ 300 ([ 50aW] - [ {307 ] raw])
(ii) Under Hy, $()/(T/mp) = 7 [J30Y2[[J 3002 (J 30W] - (L3002 ([ 3¢ W]}

For a linear trend, f(r) = (1, r). If the square root of a matrix is taken as its Choleski

decomposition, then the asymptotic distribution under Hg is

10 /3W(T) - 2r) [GraW | | (1/3)W() - (1/2) [ geaW
12 T
1/2 l/m . (2,-)'1W(1') + r'zfardw - (1/2)W(1) +.I(1)'dw
(3-2.9) = 12A[B(r)-7B(1))

Remarks
(i) If £(t/T) = 1 includes only an intercept, then Theorem 3.2.5 collapses to Theorem 3.2.1.

(ii) Theorem 3.2.5 (i) extends the results in PKK (1989) to the case of trending data. They

assume that,

(3.2.10) f(t/T) is either stochastic or deterministic
(3.2.11a) T P8/ T)/T) — [iFf=R
(3.2.11b) ﬁs{glf'(t/T)f(t/T) —-R
(3.2.12) \J—%E[f;’{]f(t/T)ut = oRY/*W(r)

So in our notation
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(3.2.13) e ern! = ri,.

Then under Hy,

(3.2.14) \JLT[EQT:qlf'(t/T)f(t/T)] (b(r) - b(1)) = ¢ RY?[W(r) - rW(1)]

After standardization using (3.2.11) and (3.2.13),

(Tr]

(3.2.15) SR/ T/ TN (b(r) - b(1)) = o WO(r)

cf. PKK (1989), equations (11) and (12). Therefore the asymptotic distribution does not depend

on f, the regressors in the regression.

For Theorem 3.2.5, conditions (3.2.11b) and (3.2.13) are no longer true, since they also
depend on the curvature of the function f. Therefore simplification of the asymptotic
distribution to a Brownian Bridge as in (3.2.15) is no longer possible. Results in Theorem 3.2.5

typify the way in which the asymptotic distribution depends on the regressors in tests for unit

root.

Note that S(r) is a random function in D¥[0, 1]. There are many ways to transform the
random function in DX[0, 1] into a random variable. The norm in R¥ transforms the random
function in DX[0, 1] into random function in D[0, 1]. Many transformations can turn the
random function in D[0, 1] into a random variable. For example, for the first step, the Max
norm and the Euclidean norm can be used; for the second step, the supremum, the integral over
(0, 1) and the range can be used. PKK (1989) used the Max norm ||S|, along with the
supremum. We will examine the use of the Max norm [|S||, and the Euclidean norm [|S|| along
with the supremum. The supremum and the range of "S(r) “ over (0, 1) are the same since the

function is positive (due to taking the norm) and the minimum is 0 (at 7 = 1). Our test

statistics are denoted as
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FL, = sup |80,

r€{r,1-r)

FL = S
2 r Gs[l:.[;-‘r]" S() "’

where 7 is the trimming parameter.

Our fluctuation tests are related to the “direct” tests for changing trend of Chu and
White (1992). Their tests are based on the same idea of parameter fluctuation over subsamples.
While they test for the fluctuation in the intercept and the slope separately, we test for the
overall fluctuation of the intercept and the slope as a whole. Stacking their tests for fluctuation
in the intercept and the slope together into vector S, then S can be defined similatly to S, but

with the matrix Choleski decomposition replaced by an appropriate diagonal scaling matrix.

3.2.3B. Simulated Critical Values

The asymptotic distribution under Hy with a linear trend in Theorem 3.2.5 is calculated
by simulation, and reported in Table 3.2.4. The critical values for no-trimming are
substantially larger than those for 15% trimming. The reason for this can easily be seen from
the asymptotic distribution (3.2.8). Take a realization D(r) from the asymptotic distribution.
At the beginning of the sample, r is small, hence 2 is very large, and the (2,1) element of
B(7), hence that of B(r)-rB(1), is very large. Because the Choleski factor A is lower triangular,
the very large (2,1) element of B(7) makes the (2,1) element of D(7) very large. The very large
(2,1) element of D(r) makes the Max norm and the Euclidean norm very large and
approximately equal. But with some trimming (15% for example), 72 is no longer so large,
therefore, the Max norm and the Euclidean norm are not large. But the above argument still
makes their values close. This is reflected in the tabulation of critical values in Table 3.2.2.
Specifically, for the case of a linear trend and no trimming,

P(FL, < 64.056) = 0.90, P(FL, < 75.772) = 0.95, P(FL, < 99.607) = 0.99,
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P(FL, < 64.056) = 0.90, P(FL, < 75.773) = 0.95, P(FL, < 99.607) = 0.99;

for the case of a linear trend and 15% trimming (r = 0.15),

P(FL; £4.618) = 0.90, P(FL, < 5.204) = 0.95, P(FL, < 6.382) = 0.99,

P(FL, < 4.930) = 0.90, P(FL, < 5.527) = 0.95, P(FL, < 6.741) = 0.99.

3.2.4 Distinguishing Deterministic Trend with Breaks from Stochastic Trend

As mentioned before, our proposed tests do not have any power to distinguish a break in
the trend coefficients from a true unit root. If there is a break in the trend, the test statistics
tend to have a larger value, thus resulting in the rejection of the null model. However, if the
correct breaking trend is included in the regression and the series is stationary with a breaking
trend, then the test statistics should have small values, thus not resulting in the rejection of the
null. If an incorrect breaking trend is included in the regression, the test statistics should still be
large. In reality, the location of the break is never known in advance. Most likely it is chosen
by a data-based selection procedure, for example by a plot of the data. Based on the above
analysis, the selection procedure for the break point can be based on a grid search over the break
fraction (n), for example, for n = 0.1, 0.2, ..., 0.9. The value of n at which the CUSUM test

statistic is the smallest is chosen as the true break fraction.

Once the break point is found, the time trend with break can be formed and the
CUSUM test can be done as usual. Similarly to the Perron approach, the asymptotic

distribution is incorrect if the endogeneity of the breaking point is not taken into account.

Table 3.2.5 tabulates the null distribution of the CUSUM test under the presence of a
one-time shift in the mean. Table 3.2.6 tabulates the null distribution of the CUSUM test under
the presence of a one-time shift in the intercept and the slope (the locations of the shifts for the

mean and slope are the same). Specifically, for the case of an intercept only and no trimming,
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the minimum CUSUM statistic, denoted as mCU, has the following critical values,
P(mCU <£0.717) = 0.90, P(mCU £ 0.776) = 0.95, P(mCU < 0.913) = 0.99;
for the case of a linear trend and trimming,

P(mCU <0.510) = 0.90, P(mCU < 0.539) = 0.95, P(mCU < 0.606) = 0.99.

3.3 An Adaptive Estimator of the Long Run Variance

3.3.1 Introduction

The asymptotic distributions of our test for stationarity as well as that of Park (1990)
and Bierens (1991a) all depend on the long run variance proportionally. In order for the test to
be free of nuisance parameters, an estimate of the long run variance is needed. The long run
variance is that of the series itself under stationarity, and that of its first difference under unit
root. ‘Therefore consistent estimation of the long run variance under both unit root and
stationarity calls for a switch in the random variable used in the estimation. However such a
switch is not necessary in the traditional test for unit root when the unit root model is taken as
the null model, cf. Phillips and Perron (1988). With the stationarity as the null model, the
estimate of the long run variance often uses a detrended version of the series in estimation,
which is consistent under stationarity. But under the alternative of unit root, this detrended
series still has a unit root, the estimate of the long run variance using this detrended series
explodes with the sample size, so when this estimate appears in the denominator of the test

statistic, the test is at best consistent at a rate less than the sample size.

In this section, we develop an adaptive consistent long run variance estimator. The
consistency is proved for the class of kernels used in Andrews (1991). The series used in
constructing our estimator is a weighted average of the series itself and its first difference, with
the weight being a random variable. Our estimator is adaptive in that, under stationarity, the

weight on the first difference approaches zero, and thus the level part dominates; while under
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unit root, the weight on the level approaches zero, and thus the first difference part dominates.
Our estimator is consistent under both stationarity and unit root. Therefore, when the unit root
is taken as the alternative model, the test that employs our long run variance estimate can be

consistent at the rate of the sample size, providing more power in large samples.

3.3.2. An Adaptive Estimator of the Long Run Variance

To facilitate the proof of the theoretical results, we assume in this section that u,

satisfies assumption A in the appendix.

Let Y, be the series of interest; V,(0) be a transformation of Y, with parameter 6; 0 be
an estimate of 6. For simplicity, we abstract from any deterministic trend in Y,. We are
interested in distinguishing two characterizations of Y,: the null model of stationarity, cf
equation (3.2.la), and the alternative model of unit root, cf. equation (3.2.1b). As an example
of the dependence of asymptotic distributions on o2, we take a look at Theorem (3.2.1). Note

that the long run variance o?

involved is that of u,. Therefore, in order to consistently estimate
0%, the random variable used in the estimation should be Y, under (3.2.1a) and AY, under
(3.2.1b). It seems that consistent estimation of o requires knowledge of (3.2.1a) and (3.2.1b).
But distinguishing the two characterizations of Y, is exactly the purpose of the exercise. The
random variable used in the estimation of o2 can be a function of Y, such that asymptotically it
is close to Y, under stationarity and close to AY, under the unit root. For this purpose, define

the adaptive estimate of u,

(3.3.1) V(0,) = (1-0,)Y, + 6,AY, = Y, - 8,Y,
which is a weighted average of ¥, and AY,. The random weight ()1 satisfies the following,

Assumption 3.3.1
(i) Under Hy, (}I = op(']"l/z):

(i) Under H,, 1 -6, = OI,(T'3/2),
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For the ease of exposition, define the true value of 6, to be ;¢ = 0 under Hy, 6,5 = 1 under H,.
Then Assumption (3.3.1) simply requires that 91 be consistent for 8, at a certain rate. In large
samples, vt(i)l) always extracts the stationary part of Y,. Define,

(3.3.2) Ip = ZE ) 06)
where I'(j) = E(V,V ;). Then 0% = limp_,Jp. Given u, (= V,(6;)), the kernel estimate of o

is,
(3.3.3) Jp(0g) = E;E(T.l)k(j/m’r)f‘(jaoo)

where my is the bandwidth parameter, or what is commonly known as the lag truncation
parameter,
k(j/mr) is the weighting function for the sample autocorrelation function at lag j,

I'(5,60) = ¥V (6,)V,4;(60) for j > 0, and I'(j) = I() for j < 0.

The difference between J and J(6) are the weighting function k(j/m<) and the error involved
in approximating the expectation by the sample quantity. The class of kernels k, are as defined

in Andrews (1991),

ky = {k( ) R — [-L1] | k(0) = L. k(x)=k(-x), Vx € R, [%[k(x)|dx < oo,

k(x) is continuous at x = 0. and at all but a finite number of other points}

For example, for the Bartlett estimator, k(x) = 1 - |x|, |x|] < 1; 0, otherwise. If u, is not
observable, then a model has to be estimated. With an estimate of 4, say 6, we get an estimate

of u,, say Vt(é). Defiue,

(3.3.4) Jp(0) = T2k kG/mp)TG.0)

1Y
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The difference between JT(@) and Jp(fy) is the estimation error in 0. The adaptive estimate
(3.3.1) can be viewed in this way. If the null model for Y, is trend stationarity,

(3.3.9) He Y, =p+ B8(t/T) +u, =x,0, +u,

and the alternative model is unit root with drift

(3.3.6) Hi: Y, = Yo + p(t/T) + Sy = x0, + Thoy

then in order to construct an appropriate unit root test, Y, has to be detrended. Note that now
we are using x, to denote the deterministic trend, instead of a realization of a stochastic process.
The deterministic trend x, in the above equation has the same order of magnitude as a

stationary variable. Denote the detrending parameters as 6,, and its estimate as @2.

Assumption 3.3.2

(8.3.7) (i) NT(f, - 59) = O, (1) under H,

(3.3.8) (ii) (1/VT)(0, - 820) = O,(1) under H,.

For the OLS estimate of §,, Assumption (3.3.2) is guaranteed by an argument similar to

Theorem 3.2.3. Similarly to (3.3.1), we define,

(3.3.9) V(0 = (Y- x,0y) - 04(Y ;- x.160,)

When 8 is consistent for 6. under Hg for example, then (3.3.4) is consistent for o2, cf. Newey and
West (1987), Andrews (1991), among others. However when @2 is not consistent for @,, under
H, for example, (3.3.4) might still be consistent for o? if é] is “sufficiently” consistent for 6,.
Proof of the consistency of estimate for ¢? in the literature has been using a Taylor series

expansion approach to bound the difference between I'(j.0) and f(j,ﬂo). From (3.3.10),
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av(0) _ RS L) 6=6y - E;-=11“j
(3.3.10) 55 =~ - , T o ,
(xy = %¢.401) 1 (xg-xg 1)
BV(8) | © xa
(3.3.11) S = .

’
Xi1 V]

The two-term Taylor series expansion for V(f) is,

(33.12)  Vy(0) = V,(6p) + [8V,(06)/80)(6-8) + (1/2)(6-8)[0°V (8)/9606')(6-6,)

where 8 = 6, + a(6-6y), a €0, 1]. So although the first element of the first order derivative,
dV(6)/96, does not satisfy the uniform bounding condition of Assumption B(ii) of Andrews
(1991) or Theorem 2(ii) of Newey and West (1987) in the Taylor series expansion, the strong
consistency of 91 in Assumption (3.3.1)(ii) compensates for this unboundedness. The second
order derivative, 82Vt(0)/6000'. does not depend on §; it satisfies the uniform bounding
condition, of Assumption C(ii) of Andrews (1991). Its main diagonal elements are equal to
zeros, so the second order term in the Taylor series expansion involves only the cross product
term, (91 - 010)(92 - Bg); here the strong consistency in 91 again compensates for the

inconsistency of 8.

The above analysis suggests that (3.3.12) provide a consistent estimate of o2, which is

indeed the case, as proved in the follo\ving theorem.

Theorem 3.3.1 Let u, satisfy Assumiption A in Appendix A, él satisfy Assumption (3.3.1), and
@2 satisfy Assumption (3.3.2), k(-) € &, mp — x.
(i) If m3/T — 0, then J-p(0) - I = o, (1), and J4(8) - I(6p) = op(1)-
(i) If m39%1/T — 9 € (0. x) for some q € (0. o) for which kg |f<Q)| < o0, then

JT/mp(I(8) - Ip) = O, (1). and {T/mp(dp(8) - I(6p)) = o, (1),
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where k_, 19 are defined in the appendix.
q

Proof: see Appendix A.

Therefore, consistent estimation of o? requires only that myp = o(\T), but the rate of
consistency is unknown. The condition in (ii) may be stronger or weaker than that in (i)
depending on the value of q. For the Bartlett estimator, q = 1, cf. Andrews (1991). From (ii),
the rate of consistency of the kernel estimator is m = TY(23t1) the limit of which when q
— 00 is \T, the familiar result in nonparametric statistical estimation. The larger the value of

q, the slower mp grows, and the higher the rate of consistency®.

Assumption (3.3.1) suggests that @1 be constructed as a random variable bounded to the
interval [0, 1] which approaches the correct bound asymptotically. The easiest way to bound a
random variable to [0, 1] is the exponential function and the probability measure. First we

discuss the constructs using the exponential function. Let Ap(y) be a function of the data such

that,
(3.3.13a) under Hy, Ap = +00
(3.3.13b) under H}, At £ 0

then let @1 = exp(-|A1|¥) where v controls the rate of convergence of 91 (v>0). Arg can easily
be constructed from the traditional test for unit root. Let B be the traditional test statistic. If
it is a consistent test, then under our liy, By = Op(’l"). ¢ > 0; under our Hy, By = Op(l). It is

trivial that At = T""B, 5 < «. satisfies (3.3.13). For example, for By = T(1-p), where p is the

SThe difference in the growth rate of my required for consistency of JT(é) in the
literature largely is the result of using different probabilistic inequalities in proving the
consistency. For example, there are two uses for mg = o(Tl/ 4) in the proof of Newey and West
(1987). The first is for Jq(0y)-EJp(6,) for which they wused a bound on
Var(E;r:jHutubj) < T(j+1)D", while Andrews (1991) uses a sharper bound on var(Jp(f,)) due
to Hannan (1970), and Hansen (1992) uses yet another sharp inequality. The second is for
J1(6)-31(8p), they use some bounds on V (0)AV (8)/30, while Bierens (1992b) uses a bound on

% E;ilvt(e)avt(e)/aa. For Theorem (3.3.1)(i). we use the same bound as Newey and West, but
for (ii), the bound on +Z1H, V (0)dV (6)/60 due 1o Bierens (1992b) is used.
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first order autocorrelation coefficient of y,, it is well known that ¢ = 1.

It is desirable that B, and so Ap, does not depend on the scale of y,. Since otherwise ,
rescaling y, would change the stationarity/unit root behavior of y,. This rules out [1/(T22yf)]

as a choice for By, the inverse of which is the basis for the Kwiatkowski, Phillips and Schmidt

(1990) test for stationarity.

Conditional on a first stage statistic By, we can infer the probability that the series y, is
stationary (I1(0)), P(I(0)|Bt), and the probability that it has a unit root (I(1)), P(I(1)|By), cf.
Stock (1992) and Elliott and Stock (1992). Let 8, = P(I(1))|By), then 8, 20 under Hy, 8, 2 1
under H;. With this estimate of 8, testing for unit root/stationarity is seen as an iterative

process. But the rate of convergence of ()1 is difficult to establish; therefore, we do not further

pursue this choice of 91 here.

The kernel estimators of the long run variance approximate the unknown
autocorrelations in the series by an increasingly higher order moving average process (justifying
the truncation). When the serial correlations are high, for a near unit root process for example,
the truncation may introduce substantial error into the estimation. But on the other hand, if
the serial correlation is low, for a series close to white noise for example, such truncation may
work well. To improve the quality of estimation, Andrews and Monahan (1992) propose a
prewhitening/recoloring procedure, which consists of four steps,

(i) estimate parameters 6, and 0,, and construct V,(8,,0,) as before;

(ii) prewhitening — fit a simple AR(p) model to Vt(él,éz). typically p = 1, save the the
AR coefficient estimates (say 93) and the residuals V:(@l,éz,és) = Vt.(évéz)‘
2, Vo(81,6,)03;

(iii) apply the kernel estimation using V7, denote the estimate as Jr‘i‘(é),

(iv) recoloring — the final estimate of the long run variance of V (f;) is J}(é)(l-):fﬂ@ai)'z.

The residuals after the prewhitening are expected to be close to white noise; therefore, the kernel
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estimate is expected to do better. If the coefficient estimates in the prewhitening are consistent
for some points in the parameter space, the recoloring is consistent for the inverse

transformation. It is easy to show that Theorem (3.3.1) holds for the prewhitening/recoloring

kernel estimate.

3.3.3 Monte Carlo Simulation

Tables 3.3.1 and 3.3.2 contains the simulation results for the data generating process

(1-pB)Y, = (1-6B)u,.

Indeed, for all the choices of the truncation lag m-, our adaptive estimate of o? is very close to
the Newey-West estimate for p = (0, 0.8), p = 0.9 (¢ = 0, 0.5), and § = 0.95 (§ = 0.0). This is
because for t.hese‘ cases, the adaptive weight 91 is very close to the asymptotic value of zero, cf.
Table 3.3.2. Because of the supercousistency of p for the unit root process, the adaptive weight
91 is very close to the asymptotic value of one, cf. Table 3.3.2. The level part in (3.3.1) receives
a negligible weight, so the first difference part dominates. While the Newey-West estimate
explodes because it is estimating an iufinite quantity, our adaptive estimate remains finite
because it is consistent for g2 which is the long run variance of the first difference of Y,. The
difference in the behavior of &2 for the unit root case is all that matters for the power of the test
for stationarity. For the near unit root process (p = 0.95), the adaptive estimator gives
substantial weight to the first difference part (91 = (0.335, 0.811) for 6 = (0, -0.5)), which pulls
down the estimate of o2. Note that for the near-unit root process, the Newey-West estimate is

already a underestimate of &2, but our adaptive estimator is a further underestimate.

3.4 Application of the Adaptive Estimator to Testing for Stationarity

With the new cousistent long run variance estiinator, we can construct some new unit

root tests with improved power, at least in large samples. In this section, we examine the
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power improvement for Park's (1990) \? test, the CUSUM and fluctuation test introduced

earlier in the chapter.
3.4.1 Park’s (1990) x2 Test

3.4.1A The Test Statistic

For the ease of proof, we present our result for the case of orthogonal polynomial

regression introduced in Chapter 2.

Let the null hypothesis be linear trend stationarity, and the alternative be unit root
with drift, cf. equations (3.2.5) and (3.2.6) with f(t/T)b = by + b,(t/T). Define

(3.4.1) N, = b,/

where b is the regression coefficient in the orthogonal regression 2.3.8. Then from Theorem

2.3.1, it is trivial that

Theorem 3.4.1
(i) Under Hy, Ny = N(0, 1):
(ii) under H,, N;/T = [q3(r)W(r)dr ~ N(0, 5%)

2

where s° can be calculated from Theorem 2.2.3.

With multiple superfluous regressors. we can construct a \? test. Define
(3.4.2) N, = (b3 + b3)/é%.

Then trivially from Theorem 2.3.1, we have

Theorem 3.4.2

(i) Under Hy, N, = x'z(?):

(ii) under H,, NZ/T'I = [[q3(r)W(r)de]? + [fq:',(r)W(r)dr]2

ot
-
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The N, test is similar to the x? test of Park (1990), but with improved power.

3.4.1.B Simulation Results

Tables (3.4.1) and (3.4.2) contains the results of simulation with the x? test with one
degree of freedom (one superfluous regressor). The size distortion is high for near unit root
processes using both estimates of the long run variance. As a comparison, if we used the true

value of the long run variance o2

, the size and power comparison would be much better.
Therefore, the size over-distortion is due to the underestimate of the long run variance of both
the original and the adaptive Newey-West estimator. The power of the test using the adaptive

estimator is much better. Improving the power while keeping the size distortion at the same

level as before is the sole objective of designing the adaptive estimator.

3.4.2 The CUSUM Test

Table 3.4.3 contains simulation results on the CUSUM test for stationarity using the
new adaptive estimator, Table 3.4.4 is the result with a linear trend. Comparing with the

results in Section 3.2, we see that indeed the power of the test has been improved substantially.

3.5 Summary and Conclusion

Using results on spurious regression, we find that tests for parameter stability also have
power against unit root process. The asymptotic distributions of the CUSUM test using OLS
residuals and of the parameter fluctuation test in subsamples are derived under the null of trend
stationarity. Simulation results show that the tests have reasonable empirical sizes and

reasonable power.

Many inference procedures in time series analysis relies on asymptotic theory, the
asymptotic distribution involved often is proportional to (the square root of) the long run

variance of the underlying series. To get a nuisance parameter free distribution, a consistent
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estimate of the long run variance is needed. The problem with the existing long run variance
estimators, e. g. the Newey-West estimator, is that they are inconsistent under interesting
alternative hypothesis, therefore the power of the test may be affected. For example, if the null
hypothesis is stationarity and the alternative is unit root, the Newey-West estimator is
consistent under the null, but explodes under the alternative. If the test statistic is constructed
as some sample quantity divided by this long run variance estimator, the power of the test is

weakened.

In this chapter, we propose an adaptive estimator of the long run variance. The series
used in the Newey-West type of estimmator is a weighted average of the series of interest under
the null and under the alternative. with the weight being a random variable. Our estimator is

consistent under both the null and the alternative.

Finally we apply the adaptive estimator of the long run variance to the CUSUM test,
the parameter fluctuation test, and Park’s \? test. Indeed using the adaptive long run variance

estimator significantly improves the power of the tests.

ot
-1
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To simplify the proof, we adopt the following assumptions from Andrews (1991). Due
to the nonstationary nature of the trending regressors x,, the sample quantities are used instead
of the expectation as in Andrews (1991). Let 6, be the true value of the parameter 6, and © be

a small convex neighborhood of 4,

Assumption A
(i) u, is mean zero, fourth order stationary random variable;
(i) 22;5ITGM < oo;
(iii) 32 ;,mnk(0d,m,n) < oo,

where «(t,t+),t+m,t+n) = E{ugu,4;up 4 mUesn)

Assumption B

(i) NT(8-85) = O,(1);
(ii) (8y-010) = O,(T*/?) and (8,-0,) = O,(VT);

(i) HE,5upg ¢ oVE(6) < 003

. av, (0
(iv) %E;S“Poee‘ —5‘#"2 <

V) s 0+ ¥
) %Etsupo c e( 50( ) \]T(B-Bo)) < o0

The proof is similar to that for Theorem 1 of Andrews (1991). It consists of some
Taylor series expansions and inequalities involving V,, 9V, /38, and 9%V, /5866'. For ease of

notation, we drop the subscript T from m  and J1.

Under the conditions in (i) and (ii) of the theorem, Proposition 1 of Andrews (1991)

holds under both Hy and H;. For (i), J(65)-J = o,(1); for (ii), ,IT/m [3(6p)-3] = Oy(1). So to
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complete the proof, we need to provide bounds for [B(8)-3 (8y)). For this, we follow the steps in

Andrews (1991) which relies on Taylor series expansions of J(6) at 6.

For (i), we need the following mean value expansion for J,

) - 3001 = o 220 (16 - )
(3A.1) = h = k(i/mg) [am,a)] NT( - 65)]
where 8 = 6 + ,(0-6;), a, € [0, 1].
[Ty - s01| < & orG4)

But % Z; [kG/Sp) — JIk(x)|dx < oc, if it can be shown that

(3A.2) dm b) (VT(6 - 65)]| = Op(1)
then
(3A.3) T [3(9) J(0y)] = OL(1).

For (ii), we will use the following Taylor series expansion for J,

FEOO 300 = gy 206 (100 - 6,0 + 3 (700 - 000 e o) (T3 - 0
(3A.4) = Ly pNT(8 - 0p)] + § NT(@ - 0g))'LyrNT(6 - 6,))

where 8 = B, + aq(0-8y), ay € [0, 1]. If it can be shown that

(3A.5) L,r[NT(8 - 65)] = o,(1),

and

(3A.6) [NT(B - 6))' L, NT(8 - 85)] = oy(1)
59
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then
(3A.7) JEH(®) - 3(09)) = o(1).

Note that

ozv;(o) - 0 xpq
300 | o

t-1

SO

NT(0 - 0)1'Lar[NT(@ - 6,)] _‘l—= K(3/m)EB, X1 [T(0020)(81-010)]

but from Assumption (3.2.1) and (3.2.2),

(3A.8) T((-)2-020)(@l-0m) = 0p(1) under both Hy and H,

therefore

| TG - 06)) L, VTG - 6]
< T m-' Tlk(/m)] “'1-'; Xy 1" Op(l)

= Op(,|m/T)

(3A.6) is proved. Note that (3A.8) is the only result that depends on the extremely strong rate

of convergence of § under H,.

The rest of the proof cousists of establishing {(3A.2) and (3A.5) under both Hj and H;.

First we need some results on Taylor series expansion,

A% (00) v (0)

005 (*-00)

(3A.9a) V,(8) = V,(6,) + (0-6,) + L(6- 5 2vilf)

aV(8) 9V, (0,) . 9*V,(0) 0.0
20 -~ on T oo %

where 8 = 0 + a3(8-6y), a3 € [0. 1]. 8 = 0, + ay(8-65). oy € [0, 1].

(3A.9b)
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Under Hy,

av(ly) | u
B

o~

Assumptions B(i)(iii)(iv) hold.

sup; >

aru ) “

= Supj >

. OV,;(8) av, (8
qladt(vw) e +vtﬂ(9) o ))

av,(0) ] 1/?
< ffmocovto]} e 2

= Op(1) by Biii)(iv)
(3A.2) holds by B(i).
T kG/m)Euy(ug g Xy p) + upgi(ug x,))
T T RO/MIZ(uguy g, upx a4 5%, )
By (A.13) of Andrews (1991),
+Z; k(i/m)Syu,u, 5 = 0,(1)

Similar to (A.15) of Andrews, it is easy to show that,

I5(

=

\‘% X k(j/m)Stule_j)2 = Op(m/T)

E(ﬁ %‘Ej k(j/m)Stquxtﬁ = O,(m/T)

so Ly = op(l), and (3A.5) holds by B(i). The proof under Hy is complete.

Under H,,
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. t-1
()\'t(go) 'SJ'L=ll“v. -vl—lu‘
—o0 N 0

Axg - x) -1/T

so AV,(6)/06 is unbounded in ©. However under Assumption B(ii),

av. (6 .
00) (5.0) = -5V V(0 030) - $dp 05 50) = Op(L/AT).
From (3A.9b),
av 0 v 0V,(0) -
4D (0 = L0 (5904 (0.0, Z55) (5 )

= O,(1T)

Using the Taylor series expansion for V (), (3A.9a), and the above results, it is trivial that
B(iii) and B(v) hold, but B(i) (iv) do not. Note that for the above results to hold, it is not
necessary that \T(f,-0,5) = Op(1/T). They are valid as long as \T(8,-0,0) = O, (1/NT).

However,

a”*‘ " Fo-0,)

Supj >1

) 6
%\:,L(V 0 lﬂ( VT(0-00) + Vz+3(0) ~u )\l—(()-oo))

=SUup>1

1/2

v (9) F(o-oo)) ] o)

< 2[,%,Etsup0 c GV2(0)] [ +E,5UPg ¢ © (

{3A.2) is proved.
LyolNT(8 - 8p)] = - g £S5 k(G/m)Z,u [3i+’11";.ﬁ(01'010) + (lfﬁ)(éz.z'oz.z.o)]
(3A.10) - \[—l-ﬁ— %Sj k(G/m)Zu 4, [Sk‘;lukﬁ(()lﬂw) + (l/ﬁ)(émfgzﬂyo)]

It is shown in Bierens (1992b) (cf. equations (9.5.8) and (9.5.10)) that,

r t“l':.+'ll =0 (\E)
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From this, we have,
i (3 /1) j-
w55 KG/m)pE, Sy, = Op(m).
From Assumption B(ii),

(3A.11) T & kG/m)ES 0, Ty VT(9,-0,4) = Op(m/T)

Similar to (A.15) of Andrews (1991), it is easy to show that,

E(\J—% iz, k(j/m)E‘,tut)z = 0,(m/T)

SO

T A5 K(/m)Su, (1 INT) 0y 385 50) = op(1)

A similar result holds for the second term in (3A.10). So (3A.5) holds.

Note that it is not

necessary for (3A.5) that ﬁ(f)l-Olu) = Op(l/T); it holds as long as ﬁ(él-aw) = op(1/m). The

proof under H, is complete.
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Appendix B. Andrews Qptimal Quadratic Spectral Estimator of long run variance

The materials covered here are from Andrews (1991), and are included only for

completeness and for illustrative purposes.

The quantities k, and 9 in Theorem 3.2.1 measure the smoothness of the kernel k(-)

and the spectral density function f(A) of u, at zero, cf Andrews (1991),
. 1-k
kg = lim,_, -lxl(_:) forq € [0, o)

fa) = &~ % il9rG) forq € [0, 0)

Examples of kernels in k; and their q values in Theorem (3.2.1)(ii) are as follows:

Lforjx|] <1
(i) Truncated k(x) =
0 otherwise

1-]x| for |x} < 1
(ii) Bartlett k(x) = q=1
0 otherwise

1-6x%4+6|x|> for 0 < |x] < 1/2
(iii) Parzen k(x) = 2(1-x|)3 for 1/2 < |x| < 1 q=2
0 otherwise
(14cos(mx))/2 for |x|<1

(iv) Tukey-Hanning k(x) = q=2
0 otherwise

(v) Quadratic Spectral  k(x) = =5 (S5 - contomsss) ) q=2

Theorem 2 of Andrews (1991) proves that for any given sequence of bandwidth parameters

{mr}, the QS kernel is preferred to other kernels in the asymptotic truncated MSE. Define
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a(q) = (f9/10))2
mT = (qk?{"(Q)T/J'kz(x)dx) 1/(2q+1)

then Andrews (1991), in Corollary I, shows that the sequence m7 is preferred to other sequences
{my} in the asymptotic truncated MSE. For the familiar kernels,

Bartlett m} = 1.1447(a(1)T)'/3
Parzen mg = 2.6614(0:(2)’[‘)1/5
Tukey-Hanning my = 1.7462(01(2)’1‘)1/5
Qs my = 1.3221(a(2)T)V/®

But m% involves unknown parameters a(q), which can be estimated by assuming and

consistently estimating an AR(1) model for V,(8),

&(2) = 4p%/(1-p)*
a(1) = 45*/[(1-p)*(1+)’]
iy = (ak26(0)T/ K2 (x)dx ) V/Ca+D)

Theorem 3 of Andrews (1991) establishes the consistency and optimality of the automatic
bandwidth estimator ry. In the simulation, we use the QS estimator with an automatic

bandwidth estimator with q = 2.
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Table 3.2.1 Simulated Asymptotic Distribution of the CUSUM Test

a=P(Q<q)
T=10 7 =0.15
range sup range sup

ax100 k=0 k=1 k=0 k=1 k=0 k=1 k=0 k=1
1 0.703 0.660 0.417 0.351 0.618 0.601 0.392 0.328
5 0.807 0.760 0.493 0.408 0.713 0.706 0.471 0.387
10 0.872 0.818 0.545 0.440 0.778 0.765 0.526 0.420
15 0.922 0.864 0.586 0.465 0.823 0.809 0.568 0.444
20 0.963 0.905 0.620 0.487 0.865 0.850 0.604 0.467
30 1.037 0.969 0.681 0.525 0.937 0.917 0.668 0.506
40 1.105 1.030 0.740 0.561 1.002 0.980 0.732 0.542
50 1.172 1.091 0.802 0.597 1.069 1.044 0.795 0.580
60 1.241 1.1535 0.869 0.635 1.142 1.112 0.865 0.618
70 1.321 1.228 0.948 0.678 1.222 1.191 0.945 0.664
80 1.418 1.319 1.052 0.732 1.322 1.286 1.049 0.720
20 1.563 1.455 1.207 0.810 1.476 1.429 1.207 0.801
95 1.697 1.572 1.333 0.381 1.600 1.550 1.333 0.873
99 1.960 1.828 1.605 1.019 1.850 1.813 1.605 1.011

The simulation is based on 10000 replications of samples of 500 observations. k is the

maintained polynomial time de.RANGEisﬁmhehmﬂDu)-mﬁeh&ﬂDhﬂ,SUPis

SUp, ¢ [f'l.,]ID(l')L where D(r) is the asymptotic distribution in Theorem 3.2.5(i).
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Table 3.2.2 Monte Carlo Simulation on the CUSUM Test

with An Intercept

A. The SUP Test ( = 0)

14
0.00 0.30 0.90 0.95 1.00
6 m 5% 10% | 5%  10% | 5% 10% | 5% 10% | 5% 10%
0.0 2 5.6 9.8[51.5 63.5|19.7 85.9]93.8 97.2| 09.3 00.7
4 5.1 10.2[30.3 42.4|55.6 68.1]|78.7 86.2| 97.9 08.8
8 4.1 9.3 |14.7 22.4/30.8 41.3|54.8 64.8| 91.2 94.7
12 3.5 9.4! 8.9 15.5|20.1 29.7|36.8 49.9| 82.0 88.8
QS 5.3 9.4 1.4 4.7 0.8 2.3| 0.1 0.4 0.2 0.5
| 5.5 9.5 2.0 4.4 1.6 3.5| 1.0 2.21100.0 100.0
0.5 2 0.1 0.3139.1 51.8 | 74.7 82.6|92.0 96.4| 99.7 99.90
4 0.2 0.825.2 35.8(53.1 65.5|78.3 85.9| 98.1 99.1
8 0.9 2.2(111.9 21.8|28.1 42.0{53.8 64.4| 91.9 95.2
12 1.0 4.3 7.2 13.6]16.1 26.6|38.5 49.7| 82.2 89.0
QS 0.2 0.9]29.1 39.950.0 61.8|67.0 77.9| 70.9 80.5
| 8.2 14.5| 2.4 4.7 1.5 2.9 0.3 0.9]100.0 100.0
-0.5] 2 7.2 13.3 [ 54.5 65.8 | 19.1 86.5|94.6 96.9| 09.7 99.9
4 5.3 10.6 |30.5 42.3|54.4 67.0]|79.6 86.8| 97.1 98.5
8 3.8 8.9 (15.3 23.6(31.2 40.4|51.9 63.1| 89.6 94.0
12 3.8 8.0 (10.1 17.1|18.8 28.7(36.2 47.7| 80.1 86.6
QS 0.8 2.1{ 0.0 0.0| 0.0 0.0! 0.0 0.0 0.0 0.1
o] 4.0 8.6 2.6 5.0 1.9 4.4 0.3 1.8{100.0 100.0
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B. The RANGE Test (7 = 0)

0.00 0.80 0.90 0.95 1.00
9 |m 54 10% [5%  10% | 5% _ 10% |54 _ 10% |5% 10%__
0.0 2 3.4 8.9 [66.1 78.0|91.7 96.6 [98.4 99.3 | 99.9 100.0
4 3.4 8.6 |34.7 47.7({69.5 79.9 |88.7 94.1| 99.1 99.2
8 2.6 7.5 |11.3 21.6(34.2 47.8|59.4 72.0( 93.9 96.0
12 1.7 6.3 4.4 10.8 | 13.5 28.0(31.8 50.1| 82.6 90.4
QS 4.1 9.0 0.3 1.0f 0.2 0.3} 0.0 0.0 0.0 0.0
o0 3.5 9.4 1.2 2.4 0.5 1.8| 0.2 0.5]100.0 100.0
0.5 2 0.0 0.3 |53.0 65.2|29.3 94.3[98.7 99.9[100.0 100.0
4 0.3 0.7 |29.9 44.7 |66.9 79.4 |87.8 93.6| 99.1 99.5
8 0.7 2.8 [11.4 21.4]29.9 46.2|61.1 75.1| 94.1 96.6
12 1.1 4.4 5.6 12.6|11.4 25.0(33.5 51.6( 84.1 91.1
QS 0.4 0.6 }36.8 49.1])61.1 77.2|77.5 85.8] 56.3 68.9
00 3.7 23.2 2.0 3.6y 0.6 1.7| 0.0 0.2](100.0 100.0
-0.5 2 7.0 13.9 |71.6 82.2[91.0 95.698.4 99.3| 99.8 99.9
4 4.3 10.5 |41.4 54.2)68.4 T78.2/[90.4 95.2] 99.1 99.6
8 2.7 7.6 [13.2 26.5|31.1 44.661.6 71.9] 93.0 96.3
12 1.7 5.8 5.7 12,91 13.2 "'24.932.7 50.1| 79.8 87.8
QS 0.4 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
o0 3.5 7.3 1.0 3.5 0.3 1.0} 0.0 0.4} 100.0 100.0
The simulation is based on 1000 replications of the following DGP,
(1-pB) y, = (1-0B)u,, where uy ~ NIID(0, 1),t =1,2,.-, T, T = 300

m is the number of autocorrelations used in the Newey-West estimate of long run variance. The

column for m = oc uses the true ¢

2

1 it is only meant as a comparison.
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Table 3.2.3 Monte Carlo Simulation on the CUSUM Test

with a Linear Trend

A. The SUP Test (r = 0)

P
0.00 0.20 0.90 0.95 1.00
6 m 5% 10% | 5% 10% | 5% 10% | 5% 10%2 | 5% 109
0.0 2 3.1 7.8 |66.1 76.0|91.2 96.4|97.7 99.0 | 100.0 100.0
4 3.2 7.5 |35.3 49.4|67.1 80.1{87.9 92.0| 97.0 98.7
8 2.8 7.2 [14.0 23.8(35.9 48.5[60.6 73.0| 88.4 03.2
12 2.3 6.8 6.3 15.5|18.9 31.2(34.9 52.6| 71.2 82.8
Qs 3.4 8.0 0.6 2.2 0.1 0.3]| 0.2 0.2 0.0 0.1
| 3.9 7.9 1.4 3.2| 0.3 1.0/ 0.0 0.1/100.0 100.0
0.5 2 0.2 0.2 |51.8 63.9|83.8 94.5|97.8 99.3| 99.8 99.9
4 0.4 1.4 |[31.8 44.0|68.1 79.1(86.8 94.0| 97.0 99.1
8 1.3 3.9 [13.9 24.8{34.8 50.0(60.7 T71.8| 86.8 01.6
12 2.3 6.9 7.6 16.5115.9 30.7)34.8 52.3| 71.9 81.1
QS 0.5 1.5 |36.9 49.3|65.7 76.7T|77.7 86.8| 82.6 91.3
| 12.3 22.7 1.1 4.3} 0.4 1.1] 0.0 0.2]100.0 100.0
-0.5] 2 7.8 15.0 |69.4 8.4 |90.4 94.6 |98.4 99.3 | 99.8 99.9
4 5.1 11.9 |41.3 54.3|67.7 78.6|88.3 93.5| 97.8 99.0
8 4.4 8.9 [17.4 29.2|34.2 48.4|59.2 72.8| 87.9 92.3
12 2.5 8.9 8.1 17.4(15.5 29.0[36.1 52.0| 70.1 82.4
Qs 0.5 1.5 0.0 0.0| 0.0 0.0| 0.0 0.0 0.0 0.0
| 3.8 6.8 1.5 4.3| 0.1 0.7 0.3 0.5]100.0 100.0
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B. The Range Test (r = 0)

p
0.00 0.80 0.90 0.95 1.00

6 m 5% 10% | 5% 10% | 5% 10% | 5% 10% | 5% 107

0.0 2 3.5 8.2 |67.8 19.0(93.1 97.3[98.0 99.4|100.0 100.0
4 3.1 8.2 !35.8 50.4|70.3 80.2|88.9 93.8| 97.7 99.4
8 2.3 8.2 |13.2 922.5!|33.8 48.1(58.6 71.7| 88.7 92.8
12 2.5 7.4 5.7 13.0|16.8 28.7|33.7 48.8| 71.6 82.1
Qs 3.8 7.9 0.4 2.1| 0.1 0.4 0.0 0.3 0.0 0.1
©| 3.3 8.4 1.1 2.3 0.2 1.0{ 0.0 0.2]100.0 100.0

0.5 2 0.2 1.2 |53.7 66.990.8 94.9 | 98.4 900.5]| 99.8 99.9
4 0.5 1.3 |32.6 44.9|70.2 80.9{88.8 94.3| 98.5 99.2
8 1.3 5.2 |14.0 23.8|33.7 48.0[60.0 72.2| 87.4 92.6
12 2.9 6.7 8.3 15.715.7 29.2(35.9 51.3| 70.7 81.8
Qs 0.6 1.3 |37.5 50.6|67.1 77.6|79.8 86.8| 84.8 92.1
| 14.5 23.8 1.6 3.6| 0.4 0.8! 0.0 0.2]100.0 100.0

-0.5 2 8.2 15.5 |70.6 &1.0]91.3 96.0 |98.8 99.4| 99.9 99.9
4 6.0 12.6 |41.8 54.9[69.1 79.3[90.8 95.1| 98.3 99.3
8 4.1 9.5 |15.7 27.2135.0 46.8}61.2 72.4| 88.2 93.1
12 3.0 8.5 7.8 15.3|16.0 28.3|34.8 50.3| 70.4 81.6
Qs 0.6 1.3 0.0 0.0| 0.0 0.0| 0.0 0.0 0.0 0.0
| 4.0 7.6 1.4 2.9| 0.2 0.6] 0.3 0.6]100.0 100.0

The simulation is based on 1000 replications of the following DGP,

(1-pB) y, = (1-0B)u,, where u, ~ NIID(0, 1),t =1,2,.--, T, T = 300
m is the number of autocorrelations used in the Newey-West estimate of long run variance. The
row for m = oo uses the true ¢%; it is only meant as a comparison. The row QS uses the QS

estimate of Andrews (1991); see appendix B for details.
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Table 3.2.4 Simulated Asymptotic Distribution of the Fluctuation Test

a=PQ<aq)
r=10 r = 0.15
a*x100 Max-norm  Euclidean norm  Max-norm Euclidean norm
1 9.425 9.431 1.467 1.613
5 12.741 12.741 1.763 1.946
10 15.336 15.337 1.969 2.173
15 17.548 17.548 2.113 2.343
20 19.393 19.393 2.248 2.486
30 23.261 23.261 2.473 2.737
40 26.931 26.932 2.709 2.981
50 31.234 31.234 2,044 3.233
60 36.422 36.423 3.222 3.509
70 42,393 42,393 3.551 3.839
80 50.961 50.961 3.965 4.240
90 64 .056 G4.056 4.618 4.930
95 75.772 T5.773 5.204 5.527
99 99.607 99.607 6.382 6.741

The simulation is based on 10000 replications of samples of 500 observations.

SUP is

sup, ¢ [r'l_f]" D(r) ], where D(r) is the asymptotic distribution for k = 1 in Theorem 3.2.4(i), I DIl

is the Max norm || D ||, for the column Max-norm, and it is the Euclidean norm for the column

Euclidean norm.
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Table 3.2.5 The Simulated Distribution of the CUSUM Test

under the Presence of a one-time Shift in the Mean

A. (no trimming)

n (break fraction)

ax100 {0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mCU

1 0.398 0.378 0.382 0.373 0.373 0.373 0.381 0.388 0.395 | 0.333
10 0.519 0.498 0.489 0.484 0.480 0.480 0.483 0.495 0.513 | 0.409
20 0.588 0.559 0.544 0.538 0.536 0.537 0.543 0.556 0.582 | 0.449
30 0.645 0.615 0.593 0.584 0.581 0.581 0.592 0.609 0.640 | 0.480
40 0.703 0.665 0.640 0.628 0.624 0.625 0.638 0.658 0.694 | 0.507
50 0.761 0.719 0.690 0.672 0.665 0.669 0.683 0.709 0.753 | 0.535
60 0.827 0.780 0.741 0.717 0.709 0.718 0.736 0.768 0.813 | 0.568
70 0.902 0.847 0.803 0.773 0.760 0.774 0.799 0.840 0.891 | 0.603
80 0.994 0.933 0.832 0.842 0.827 0.841 0.874 0.929 0.991 | 0.648
90 1.146 1.071 1.002 0.947 0.926 0.947 1.001 1.068 1.139 [ 0.717
95 1.271 1.197 1.113 1.047 1.007 1.034 1.103 1.189 1.266 | 0.776
99 1.522 1.440 1.344 1.235 1.192 1.229 1.337 1.430 1.531 | 0.913
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B. (trimming = 0.15)

7 (break fraction)

axl00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mCU

1 0.383 0.356 0.351 0.342 0.351 0.349 0.350 0.356 0.376 | 0.305
10 0.508 0.476 0.465 0.458 0.456 0.455 0.456 0.475 0.499 | 0.382
20 0.580 0.543 0.524 0.516 0.514 0.514 0.519 0.537 0.570 | 0.422
30 0.637 0.603 0.574 0.562 0.561 0.561 0.573 0.594 0.632 | 0.453
40 0.698 0.655 0.625 0.610 0.604 0.607 0.621 0.648 0.688 | 0.483
50 0.757 0.712 0.675 0.657 0.648 0.652 0.669 0.700 0.748 | 0.513
60 0.822 0.775 0.731 0.705 0.695 0.703 0.723 0.762 0.810 | 0.545
70 0.900 0.845 0.795 0.761 0.748 0.761 0.789 0.836 0.888 | 0.584
80 0.993 0.933 0.880 0.834 0.816 0.833 0.867 0.926 0.989 | 0.629
90 1.144 1.069 1.002 0.942 0.920 0.941 0.994 1.067 1.139 | 0.700
95 1.271 1.194 1.110 1.044 1.002 1.031 1.101 1.188 1.265 | 0.763
99 1.522 1.441 1.336 1.234 1.183 1.226 1.337 1.431 1.531 | 0.899

The simulation is based on 10000 replications of samples of 500 observations. The column
under “no break” is for the case of a constant intercept. It is taken from Table 3.2.1 (the SUP

k=0 column). 7 is the break fraction. *mCU" is for the minimum of the CUSUM test across

the grid values of 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.2.6 The Simulated Distribution of the CUSUM Test

under the Presence of a one-time Shift in Both the Intercept and the Slope

A. (no trimming)

n (break fraction)

ax100 [ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mCU

1 0.333 0.318 0.308 0.303 0.305 0.304 0.307 0.315 0.33310.276
10 0.419 0.393 0.379 0.371 0.368 0.370 0.378 0.395 0.418 | 0.330
20 0.463 0.433 0.413 0.403 0.402 0.404 0.415 0.437 0.462 | 0.356
30 0.498 0.467 0.442 0.430 0.426 0.431 0.447 0.469 0.498 | 0.375
40 0.531 0.499 0.470 0.454 0.450 0.455 0.474 0.500 0.530 | 0.392
50 0.564 0.531 0.499 0.479 0.473 0.479 0.499 0.531 0.563 | 0.408
60 0.601 0.566 0.530 0.506 0.498 0.506 0.530 0.564 0.601 | 0.426
70 0.641 0.600 0.565 0.536 0.527 0.536 0.565 0.603 0.642 | 0.447
80 0.694 0.649 0.609 0.575 0.562 0.574 0.609 0.651 0.691 | 0.473
90 0.767 0.721 0.676 0.632 0.613 0.633 0.674 0.724 0.764 | 0.510
95 0.836 0.786 0.737 0.682 0.659 0.684 0.733 0.786 0.830 { 0.539
99 0.972 0.918 0.859 0.777 0.745 0.785 0.842 0.907 0.956 | 0.606
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B. (trimming = (.15)

n (break fraction)

axl00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mCU

1 0.320 0.305 0.293 0.284 0.237 0.287 0.291 0.302 0.317 | 0.262
10 0.407 0.380 0.361 0.350 0.347 0.351 0.361 0.383 0.405 | 0.310
20 0.451 0.422 0.397 0.384 0.380 0.383 0.398 0.422 0.450 | 0.337
30 0.488 0.455 0.427 0.410 0.405 0.410 0.427 0.455 0.486 | 0.356
40 0.519 0.486 0.455 0.434 0.429 0.436 0.457 0.487 0.519 | 0.374
50 0.553 0.521 0.483 0.460 0.452 0.460 0.484 0.518 0.552 | 0.391
60 0.590 0.554 0.515 0.486 0.477 0.486 0.515 0.552 0.591 { 0.409
70 0.632 0.592 0.552 0.517 0.505 0.517 0.551 0.592 0.634 | 0.429
80 0.686 0.640 0.595 0.556 0.539 0.555 0.597 0.640 0.683 | 0.456
90 0.762 0.712 0.664 0.617 0.592 0.614 0.660 0.714 0.760 | 0.493
95 0.831 0.776 0.724 0.665 0.637 0.668 0.721 0.776 0.824 | 0.526
99 0.966 0.907 0.848 0.763 0.732 0.775 0.838 0.903 0.949 | 0.592

For explanation, see the note for Table 3.2.5.
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Table 3.3.1 The Estimates of the Long Run Variance

Am=2
p =0 0=0.5 0=-0.5
o? NW Adap | o? NW Adap | o? NW Adap
1.00 1 146.22 1.98 |0.25 37.39 10.69 | 2.25 325.42 2.15
0.95 | 400 25.81 10.13 | 100 6.87 6.84 900 56.58 4.28
0.90 | 100 13.43 12.94 25 3.86 3.84 225 29.82 13.93
0.80 | 25 6.60 6.58|6.25 2.12  2.11 [ 56.25 14.57 14.45
0.00 1 0.99 0.99]0.25 0.59 0.59| 2.25 1.88 1.88
B.m=4
p 0=0Q 0=0.5 0=-0.5
o? NW Adap | o? NW Adap | o? NW Adap
1.00 1T 240.78 2.62 |0.25 61.26 17.13 | 2.25 536.17 2.45
0.95 | 400 41.21 15.76 | 100 10.65 10.61 900 90.63 5.88
0.90 | 100 20.72 19.93 25 5.64 5.62 225 46.29 21.06
0.80 | 25 9.49 9.47 | 6.25 2.78 2.77|56.25 21.28 21.11
0.00 1 0.98 0.98]0.25 0.45 0.45| 2.25 2.00 1.99
C.m=38
p 0=0 0=0.5 0=-0.5
o? NW Adap | o? NW Adap | o® NW Adap
1.00 1 423.49 3.75|0.25 107.38 20.37 | 2.25 943.32 2.83
0.95 | 400 68.47 25.32| 100 17.32 17.25 900 150.78 8.36
0.90 | 100 32.37 31.08 25 2.50 3.47 225 72.52 31.90
0.80| 25 13.26 13.22(6.25 3.64 3.63|56.25 30.10 29.84
0.00 1 0.97 0.96]0.25 0.36 0.36 | 2.25 2.06 2.05
76
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D.m=12

p 0=0 0=0.5 0=-0,.5
o? NW Adap | o? NW Adap | o NW Adap

1.00 1 597.83 4.71 [0.25 151.39 40.74 | 2.25 1331.71 3.11
0.95 |400 91.60 33.02 | 100 22,94 22.85 900 201.69 10.19
0.90 |100 41.01 39.32 25 10.60 10.56 225 91.83 39.44

0.80 | 25 15.39 15.35 |6.25 4.14 4.12 |56.25 35.24 34.93
0.00 1 0.96 0.95 [0.25 0.32 0.32 | 2.25 2.06 2.06
E.m=16

? =0 7=0.5 p=-0.5
o? NW Adap | o? NW Adap | o? NW Adap

1.00 1 764.01 5.52 [0.25 193.35 51.28 } 2.25 1701.83 3.34
0.95 |400 111.20 39.21 100 27.67 27.56 900 244.74 11.54
0.90 |100 47.43 45.41 25 12.16 12.11 225 106.04 44.68
0.80 | 25 16.63 16.58 |6G.25 4.42 4.41 |56.25 38.35 38.00
0.00 1 0.94 0.94 }0.25 0.30 0.30 | 2.25 2.06 2.05

Note: The simulation is based on 1000 replications of the following data generating process,
(1-pB) y, = (1-0B)u,, u, ~ NIID(0, 1), T = 300.
o? is the true long run variance; NW is the Newey-West estimator (ap = 0); Adap is the

adaptive Newey-West estimator in section 3.3; m is the truncation lag, [T1/4] = 4. The

numbers presented in the tables are sample averages across 1000 replications.

-~}
-1
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F. Optimal Quadratic Spectral Estimator

With Andrews Automatic Bandwidth Estimator

p 0=0 9=0.5 f=-0.5

o? NW Adap | o2 NW Adap o? NW Adap
1.00 1+ 5.55 0.25 485.42 29.57 2.25 + 5.18
0.95 400 367.02 57.54 100 14.34 14.34 900 2550.46 20.41
0.90 100 94.32 85.20 25 6.09 6.09 225 576.14 131.89
0.80 25 24.10 24.11 6.25 2.60 2.60 ([56.25 125.17 123.44
0.00 1 1.00 1.00 0.25 0.47 0.47 2.25 2.99 2.99

Note: (+) > 366720.70.

QS is the Optimal Quadratic Spectral estimator with Automatic

bandwidth estimator and prewhitening/recoloring; Adap is the adaptive QS estimator. The

numbers presented in the tables are sample averages across 1000 replications.
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Table 3.3.2 Shnulated Values of 91 and p

P _ 0=0 _0=0.5 _6=-0.5

6, p 0, P 0, P
1.001 0.92 0.98 0.36 0.92 | 0.98 0.99
0.95!{ 0.37 0.94 0.00 0.75 | 0.81 0.96
0.90|] 0.01 0.89 0.00 0.60 | 0.32 0.94
0.80| 0.00 0.79 0.00 0.38 } 0.00 0.88
0.00f 0.00 -0.00 0.00 -0.40 | 0.00 0.39

Note: él is the weight for the first difference in estimating a,, cf. equation (3.3.1), while p is the
first order autoregressive coefficient of y,. The numbers presented in the tables are sample

averages across 1000 replications. For the design of the simulation, see note for Table 3.3.1.
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Table 3.4.1 Monte Carlo Simulation on the x3(1) test

p
0.00 0.80 0.90 0.95 1.00
0 m 5% 10% | 5% 10% | 5% 10% | 5% 10% | 5% 10%
0.0 2 4.6 10.8[30.8 39.2|46.0 53.4 |58.3 64.9]81.2 84.1
4| 4.5 11.8|21.1 30.7|37.1 44.7|50.0 57.5)]76.7 80.3
8 5.9 12.9|14.7 22.5|28.4 35.840.8 47.7|68.8 74.3
12 7.4 14.2[12.7 20.0({24.5 31.4[36.3 42.8 | 65.3 69.4
Qs 4.6 10.6| 6.3 11.2]11.6 16.6|15.5 21.5]34.2 41.9
| 4.0 9.1| 4.0 8.5| 3.4 7.6| 1.7 5.2]96.1 96.7
0.5 2 0.3 1.9 26.5 36.1] 45.5 54.1]59.9 65.2 |81.4 &84.1
4 1.4 3.5[21.0 29.1|37.8 45.3]52.5 59.1|76.7 80.7
8 2.4 5.2 {16.6 23.0(27.6 36.6|43.9 49.7 | 69.3 74.2
12 3.7 7.8(14.2 21.7(23.5 32.2(38.1 46.2|64.0 69.9
QS 1.1 3.2 122.3 30.7)|37.4 44.7 |49.0 55.4|70.0 75.0
o] 5.6 9.8| 4.4 9.9| 2.5 6.3 2.1 5.5)96.8 97.6
-0.5] 2 7.3 13.7 | 32.5 40.9 [47.1 52.7 | 63.1 68.8 | 78.5 82.4
4 6.8 12.8123.3 32.1(37.1 45.1|54.0 60.5|73.7 77.4
8 6.3 13.2[16.5 25.1|26.8 35.6|44.0 51.5]68.4 72.0
12 7.3 14.5[14.8 21.4[22.9 30.7|37.3 45.5|64.0 68.8
QS 2.0 55| 1.2 3.3| 1.2 3.0| 4.6 7.2]15.8 20.5
| 4.3 9.4 4.2 R®.7| 2.8 6.5| 2.6 5.3(/96.5 96.8

The simulation is based on 1000 replications of the following DGP,
(1-pB) y, = (1-0B)u,, where u, ~ NID(, 1),t =1,2,--, T, T = 300.
»

“m” is the number of autocorrelations used in the Newey-West estimate of long run variance.

The column for m = oo uses the true ¢2; it is only meant as a comparison.
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Table 3.4.2 Monte Carlo Simulation on the x?(1) test

Using the Adaptive Estimator

/]
0.00 0.80 0.90 0.95 1.00
] m 5% 10% | 5% 10% | 5% 10% | 5% 10% | 54 10%
0.0] 2 4.6 10.9/30.9 39.3146.2 53.6 |65.6 71.9]901.6 93.0
4 4.6 12.0{21.3 30.7|37.6 44.9|57.9 64.5%90.4 91.4
8 5.9 13.0|14.7 22.5|29.1 36.3|51.2 56.2|88.5 90.1
12 7.5 14.2|12.8 20.1}24.9 31.6|47.0 53.1|87.0 89.1
Qs 4.6 10.5| 6.2 11.4|11.8 16.9]36.2 41.9|85.1 87.5
| 4.0 9.1{ 4.0 85| 3.4 7.6 1.7 5.2(96.1 96.7
0.5 2 0.3 1.9[26.5 36.1 ]| 45.5 b54.2|59.9 65.2 | 81.7 84.3
4 1.4 3.5121.0 29.2[37.9 45.3|52.5 59.2|77.0 81.2
8 2.5 5.2 16.8 23.0|27.7 36.7|43.9 50.0(69.4 74.7
12 3.7 7.5 14.2 21,723.6 32.2)38.5 46.21|64.5 70.0
QS 1.1 3.2122.3 30.8|37.1 44.8 149.1 55.2|70.6 75.7
oo 5.6 9.8} 4.4 9.9! 2.5 6.3| 2.1 5.5|9.8 97.6
-0.5 2 7.4 13.8 | 32.5 41.0[56.2 62.5|%4.0 86.096.1 96.5
4 6.9 12.8|23.4 32.1|49.2 55.5|81.2 84.1|95.7 96.2
8 6.4 13.5{16.7 25.0{40.4 48.2|77.1 81.1|94.8 96.0
12 7.3 14.5]15.0 21.5(36.1 44.1 | 74.7 78.4{94.5 95.7
Qs 1.9 5.5] 1.4 3.2]14.1 18.8|66.5 71.6(93.2 94.7
wo| 4.3 9.4 4.2 87| 2.8 6.5 2.6 5.3|96.5 96.8

The simulation is based on 1000 replications of the following DGP,
(1-pB) y, = (1-0B)u,, where u, ~ NIID(0, 1),t =1,2,---, T, T = 300
m is the number of autocorrelations used in the Adaptive Newey-West estimate of long run

variance. The column for m = oo uses the true o2; it is only meant as a comparison.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.4.3. Monte Carlo Simulation on the CUSUM Test

Using the Adaptive Estimator

A. The SUP Test (7 = 0)

p
0.00 0.30 0.90 0.95 1.00
V] m 5% 10% | 5% 10% | 5% 10% | 5% 10% | 5% 10%
0.0 2 5.7 9.8 51.6 63.8 [80.0 6.4 ]96.2 98.0| 99.9 100.0
4 5.3 10.1 [30.5 42.7|56.3 68.9{88.5 92.4| 99.8 99.8
8 4.2 9.4 [14.8 22.7|32.1 42.3|76.1 81.6| 99.2 99.5
12 3.6 9.5| 8.9 15.6 [21.4 30.5(67.5 75.0| 99.0 99.2
QS 5.3 9.2 1.5 4.5| 2.6 4.0{53.5 57.5| 98.2 98.4
| 5.5 9.5 2.0 4.4| 1.6 3.5| 1.0 2.2|100.0 100.0
0.5 2 0.1 0.3139.2 51.9|74.9 ®3.0|92.2 96.4] 99.7 99.9
4 0.2 0.9 25.4 36.1(53.6 65.5|78.5 86.0| 98.3 99.2
8 0.8 2.5 112.0 22,1 |28.3 42.5|54.1 64.5| 93.3 95.7
12 0.9 4.6 | 7.1 13.8|16.2 26.6|38.7 49.8| 85.5 90.5
QS 0.2 0.9 | 28.8 40.1(50.2 61.6|67.2 77.9| 91.6 94.9
| 82 14.5| 2.4 4.7| 1.5 2.9 0.3 0.9(100.0 100.0
-0.5 2 7.2 13.2 [ 54.9 66.0 | 90.2 03.1 | 99.5 90.6 | 100.0 100.0
4 5.3 10.6 |30.9 42.6{78.2 =®4.6|98.5 98.9| 99.9 99.9
8 3.9 9.2 {15.4 23.9(64.0 T7i.1]96.2 97.4| 99.9 99.9
12 3.8 8.1[10.1 17.2|56.5 63.6[95.3 96.1| 99.9 99.9
QS 0.8 2.1{ 0.0 0.0{34.4 38.1190.7 92.1| 99.9 99.9
o| 4.0 8.6 2.6 5.0} 1.9 4.4| 0.3 1.8]100.0 100.0

o

v
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B. The RANGE Test (7 = 0)

p
0.00 0.30 0.90 0.95 1.00
6 m 5% 10% | 5% 10% | 5% 10% | 5% 10% | 5% 10%
0.0 2 3.5 9.0 |[66.2 78.2[92.0 96.9 99.0 99.4 | 100.0 100.0
4 3.4 8.9 [34.7 48.0{70.6 80.2/93.1 96.4|100.0 100.0
8 2.9 7.9 |11.5 21.8|35.7 49.3 |80.0 86.5| 99.3 99.6
12 1.7 6.3 4.4 10.8|16.1 29.9/67.6 76.7! 99.1 99.3
Qs 4.1 8.6 0.3 1.0} 1.7 2.2|53.6 55.6| 97.8 98.2
o| 3.5 9.4 1.2 2.4 0.5 1.8| 0.2 0.5]|100.0 100.0
0.5 2 0.0 0.3 [53.3 65.7 |89.4 94.3 |98.8 99.9 | 100.0 100.0
4 0.3 0.7 [30.1 45.3|67.3 79.5|87.8 93.8| 99.2 99.5
8 0.7 2.9 |[11.7 21.3|30.2 46.5|61.6 75.1| 94.6 96.9
12 1.1 4.5 5.8 13.1{11.8 25.2[34.0 52.0| 86.5 92.0
Qs 0.3 0.7 [36.%8 48.8|61.1 76.8 |77.2 85.9| 93.9 96.7
| 13.7 23.2 2.0 3.6| 0.6 1.7}{ 0.0 0.2]100.0 100.0
-0.5] 2 7.0 13.9 | 72.4 82.5]|95.5 O7.5]99.7 99.7 ] 100.0 100.0
4 4.4 10.8 [42.1 54.6[84.9 90.3]99.3 99.5|100.0 100.0
8 2.8 7.7 |[13.8 27.1]/68.6 76.5]/98.1 98.7 | 100.0 100.0
12 2.1 5.8 5.6 13.4|60.2 66.7|97.3 97.9| 99.9 100.0
Qs 0.4 1.3 0.0 0.0(34.0 37.1191.6 92.3| 99.9 99.9
wo| 3.5 7.3 1.0 3.5 0.3 1.0| 0.0 0.4}100.0 100.0

The simulation is based on 1000 replications of the following DGP,
(1-pB) y, = (1-0B)u,. where u, ~ NID(O, 1), v =1,2,.-, T, T = 300
m is the number of autocorrelations used in the Newey-West estimate of long run variance. The

column for m = oo uses the true o2; it is only meant as a comparison.
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Table 3.4.4 Monte Carlo Simulation on the CUSUM Test

with a Linear Trend Using the Adaptive Estimator

A. The SUP Test (7 = 0)

P
0.00 0.80 0.90 0.95 1.00
6 m 5% 10% | 5% 10% | 5% 10% | 5% 10% | 5% 10%
0.0 2 3.1 7.9 |[66.2 76.4|91.6 96.498.2 99.1100.0 100.0
4 3.3 7.7 [35.5 49.5[67.9 80.6{91.4 94.2| 99.0 99.4
8 2.9 7.2 [14.1 24.3|37.2 49.4|74.4 81.4| 96.9 98.3
12 2.4 6.9 6.3 15.7|20.8 32.5(59.5 70.3| 95.4 96.2
Qs 3.6 7.9 0.6 2.0 0.8 1.141.8 44.4 ] 90.2 91.6
00 3.9 7.9 1.4 3.2] 0.3 1.0| 0.0 0.1]100.0 100.0
0.5] 2 0.2 0.2 |51.9 G4.3|88.9 04.7 [97.9 99.3 | 99.8 09.9
4 0.4 1.5 [32.0 44.2|68.2 79.6 |86.9 94.2| 97.1 99.1
8 1.3 3.9 {13.9 25.3(35.0 50.3(61.1 71.9| 87.1 92.1
12 2.6 7.4 7.7 16.7}116.2 31.3(35.5 52.9| 72.4 81.8
Qs 0.5 1.4 [36.9 49.4!65.7 76.7 |78.0 86.6| 88.1 93.4
o 2.3 22.7 1.1 4.3} 0.4 1.1| 0.0 0.2]100.0 100.0
-0.5] 2 7.9 15.1 |69.9 8.7 ]93.7 96.6|99.5 99.8| 99.9 100.0
4 5.3 11.9 |41.6 54.8|81.8 87.8(98.8 99.2| 99.7 99.2
8 4.4 9.2 |17.7 29.6|64.1 72.1196.3 97.9| 97.6 99.7
12 2.6 9.0 8.4 17.6(54.2 62.3{94.7 96.3( 99.3 99.5
QS 0.5 1.6 0.0 0.0|27.5 30.1(85.0 85.8| 99.0 99.0
00 3.8 6.8 1.5 4.3| 0.1 0.7| 0.3 0.5/100.0 100.0
84
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B. The Range Test (r = 0)

p

0.0 0.80 0.90 0.95 1.00
6 m % 10 5% 10% | 5% 10% | 5% 10% | 5% 10%
0.0 67 79.2 | 93.1 97.5 | 98.5 99.4 | 100.0 100.0

50.
22.

70.7 80.9(91.1 95.6( 99.2 99.7
35.7 49.3|74.3 81.6| 97.1 98.2

0
5 10%

2 3.5 8.1 .9 2

4 3.1 8.3 .2 7

8 2.4 8.4 .4 7
12 2.5 7.6 5.9 13.2118.1 30.1]/60.5 68.1| 94.9 96.3
QS 3.6 7.9 0.4 2.0 0.8 1.4{41.5 44.3 | 90.3 91.0
) 3.3 8.4 1.1 2.3] 0.2 1.0} 0.0 0.2]100.0 100.0
0.5} 2 0.2 0.2 {54.0 66.9[90.8 95.0[98.5 99.5| 99.9 99.9
4 0.5 1.3 |32.9 45.0(70.5 80.9|89.1 94.4| 98.5 99.2
8 1.5 5.0 [14.5 23.9|34.0 48.5|60.3 72.2| 88.0 92.7
12 2.9 6.8 8.4 15.9|16.0 29.7|36.2 51.6| 71.7 82.6
Qs 0.6 1.2 137.7 50.8|66.8 77.6|79.4 87.1| 89.2 94.3
| 14.5 23.8 1.6 3.6 0.4 0.8! 0.0 0.2]100.0 100.0
-0.5 2 8.2 15.8 |71.1 81.4|94.3 97.4[99.8 99.9 | 100.0 100.0
4 6.2 12.7 |42.1 55.1|82.6 83.998.9 99.2| 99.7 99.7
8 4.2 9.6 6.1 27.6164.0 71.7|96.7 97.8 | 99.6 99.7
12 3.0 9.0 7.9 15.9 | 55.1 62.5194.9 96.1| 99.5 99.6
Qs 0.6 1.3 0.0 0.0}127.3 30.0|84.8 85.7| 98.9 99.0
oo 4.0 7.6 1.4 2.9 0.2 0.6 0.3 0.6100.0 100.0

The simulation is based on 1000 replicatious of the following DGP,

(1-pB) y, = (1-6B)u, where u, ~ NIID(0, 1),t =1,2, ..., T, T = 300
m is the number of autocorrelations used in the Newey-West estimate of long run variance. The
row for m = oo uses the true o2 it is only meant as a comparison. The row QS uses the QS

estimate of Andrews (1991); see appendix B for details.
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CHAPTER 4

CAUCHY TEST FOR TREND STATIONARITY
AGAINST THE UNIT ROOT MODEL

4.1 Introduction

The traditional approach to unit root testing can be characterized as follows. First, the
null hypothesis is taken as the unit root model. Second, the asymptotic distribution of the test
statistics under the null is 2 function of Brownian motion and tabulation of critical values by
simulation is needed. Third, the asymptotic distribution of the test statistic under the null
depends on the specification of the trend component under the alternative, i.e. whether a
nonzero mean and/or linear trend are allowed, cf. Dickey and Fuller (1979, 1981), Phillips
(1987), Phillips and Perron (1988); the order of polynomial trend, cf. Ouliaris, Park and Phillips

(1988); and whether breaks in the trend are allowed, cf. Perron (1989).

As an extension of the unit root literature, the test for cointegration also takes the unit
root as the null model. Therefore, as a test for an economic theory which suggests cointegration

among economic variables, it takes as the null that the theory is false.

Recently Bierens (1991a) has proposed a new approach to the unit root testing which
takes issue with the first two features of the traditional unit root testing. It takes stationarity as
the null model and unit root as the alternative, with the asymptotic distribution of the test
statistic under the null being standard Cauchy. Therefore tabulation of critical values by
simulation is unnecessary. However Bierens’ Cauchy test does not have any power to
distinguish trend stationarity from unit root with drift, which are the two primary competing

models for most historical macroeconoimic time series.
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The approach taken by Bierens implicitly uses the variable addition method proposed
by Park (1990). First, the time series of interest is regressed on some trend component and
some superfluous regressors, then the coefficient estimates on the superfluous regressors are used
to construct the test statistic. The nuisance parameter appears in the asymptotic distribution
proportionally. If another asymptotic normal random variable can be constructed that also
depends on the nuisance parameter proportionally, then the quotient of the two random
variables is asymptotically free from the nuisance parameter. If the two random variables are
asymptotically independent with equal variance, their quotient is asymptotically standard

Cauchy. This is the approach taken by Bierens (1991a).

The test statistic proposed by Park (1990) is the adjusted F (or Wald) statistic on the
significance of the superfluous regressors. Under stationarity, it is distributed as Chi-square with
the degree of freedom being equal to the number of superfluous regressors. However, an
estimate of the long run variance is needed which can cause some problem in finite samples,
because its convergence to the asymptotic distribution may be slow. This is also part of the
problem with the Phillips-Perron test. Park’s test allows very general deterministic trend under

both the null and the alternative.

This chapter is based upon and is a generalization of Bierens’ work. We will construct
several tests for stationarity against unit root. It takes the variable addition approach of Park
and proposes a Cauchy test for stationarity with a maintained deterministic time trend. We
form the two asymptotic normal quantities in two ways. First, we fit some deterministic trend
and superfluous trend; _t.he coefficient on the superfluous trend forms one asymptotic normal
quantity, the other asymptotic normal quantity is the partial sum of detrended series using the
correct trend specification. Second, an orthogonal polynomial regression is estimated; the two
asymptotic normal quantities are just the coefficient estimates on superfluous trends. The

asymptotic distribution of our test statistics is standard Cauchy and no estimate of the long run
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variance is needed.

The asymptotic theory and a test statistic using the first approach are developed in
Section 4.2 The test statistic using orthogonal polynomial regression is developed in Section 4.3.
We give further discussion of the empirical results in Section 4.4. Section 4.5 summarizes and

concludes this chapter. The proof of all theoretical results is collected in the appendix to the

chapter.

4.2 Stationarity and Unit Root Around a General Deterministic Trend

4.2.1 The Model

The two competing models for Y, are stationarity,

4.2.1) Y, =y,

and unit root

(4.2.2a) AY, = u,.

The unit root model can also be written as,

(4.2.2b) Y, = Yo + Sy
By the invariance principle (Theorem 2.2.4),
(4.2.3) Tty = Y 2ew(1),

so the stochastic trend is asymptotically equivalent to a square root trend in probability. In a
regression of y, on an intercept and g1/ 2, the coefficient on the time trend t1/2 approaches zero
under the null, but approaches a nondegenerate normal distribution under the unit root. It
turns out, however, that all trending regressors, deterministic or stochastic, have the ability to

distinguish stationarity from unit root. Let the null hypothesis be that Y, is trend stationary,

38
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(4.2.4) Hy: Yy = (t/T)b + uy, u, ~ Assumption 2.2.1,

and the alternative be that Y, is generated by a unit root process around a deterministic trend,

(4.2.5) Hy: Yy = {(t/T)b + X, AX, ~ Assumption (2.2.1).

We will run the following auxiliary regression,

(4.2.6) y, = f(t/T)b + g(t/T)B + e,

where f(t/T) is the maintained deterministic trend and g(t/T) represents the superfluous trend.
If there are multiple superfluous regressors, then g(-) is a vector function. In this section, we
take g(-) as a scalar function. In Section 4.3, we study the case of multiple superfluous
regressors. The OLS estimate of g is, noting that 8 = 0 under both Hy and H,,

(4.2.7) B = [Zg™(t/T)g"(t/T) ' [Sg™(t/T)'e,)

where g*(t/T) is the linear projection residual of g(t/T) on f(t/T). In Bierens (1991a), f(t) = 1
under stationarity; and f(t) does not exist under the unit root. So Bierens’ results are restrictive

in that no deterministic trend is allowed under cither the null or the alternative.

4.2.2 The Asymptotic Theory

The asymptotic distribution of B is given in Theorem 4.2.1.

Theorem 4.2.1 (asymptotic distribution of 3)

(i) Under Hy, T8 = N(0, o°s?);
(ii) under H,, (1/NT)3 = N(0, o%s3);
where s% and sg are given in the Appendix.

So the rate of convergence of B is different under the null and the alternative. Specifically under

Hy, B approaches zero at rate NT, because OLS is consistent despite the serial correlation in u,.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VT3 has a nondegenerate distribution. Under H;, (l/ﬁ)B approaches a nondegenerate
distribution, \f’fﬁ is divergent. A test based on \ITB, would be consistent if the nuisance
parameter ¢ can be estimated. Actually the test proposed by Park (1990) is just the corrected
F test for (8 = 0) which is asymptotically distributed as xf. Note that § = 0 under both H,

and H,. A test can not be based on the coefficient of the maintained time trend (b) since b is

unknown.

The asymptotic distributions in Theorem 4.2.1 are Gaussian with nuisance parameter
o2. We follow Bierens (1991a) to construct a Cauchy test. Therefore we need to define another
statistic £ which behaves similarly to T/, i.e. having a limiting normal distribution under Hy
and divergent under H;. If { were defined as in Bierens,

&(r) = (T =2y -9)

t=1

then since the trend component is present under both the null and the alternative, £(7) behaves
similarly asymptotically. So &(r) does not have any power to distinguish the two models.
However, if the series Y, is detrended first, then the residuals should behave differently under
the null and the alternative. Because under H, the residual should be stationary, while under
H, it contains a stochastic trend. Accordingly we define §(7) as follows,

&(r) = [T ={Ty;

where y? is the linear projection residual of y, on f(t/T). The joint asymptotic distribution of B
t t

and £ is given below.

Theorem 4.2.2

(i) Under Hg, NT(3, &(7)) = N(0, 0%Q,(7));
(i) under H,, (1/NT)(8, &(1))’ = N(0, 0°Qy(7))s

where Q, and Q, are given in the Appendix.
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Now we orthogonalize the two normal random variables to construct a Cauchy random variable.

Define

(i(™), 1or(m)) = LNT(B, &(r)) ~ N(O, 0%1)

where the matrix L is such that Q, = LL’. For example, the Cholesky factor of Q, can be
chosen as the matrix L. However as noted in the Appendix, the need for matrix decomposition
can be avoided in certain circumstances. The asymptotic distributions of v;1 and v, are given

in the following theorem.

Theorem 4.2.3
(i) Under Hy, (7,1(7), T20(m)) ~ N(0, o?L,);
(ii) under Hy, T} yyp(7) 121(T)) = 0(C1r Co)'s

where (¢;, {;) is multivariate normal.

4.2.3 The Test

Now we define the test statistic. First let

&= J21
14T 3672

where 672 is a consistent estimate of the variance of Ay;. Note that the denominator of £ is

invariant to a linear transformation of y,. Its limiting distribution is given in the next theorem.

Theorem 4.2.4
(i) Under Hg, (7,1(7), €7)" = N(0, L,);

(ii) under H,, &5 = 02 /(0(,).

Define the statistic,

Y Y - . -
(4.2.8) Cy = 3 = gip 14T o]
91
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which is invariant to a linear transformation of y,. Since £ converges to a nondegenerate
distribution under both the null and the alternative, the asymptotic behavior of C, is dominated

by that of ;. The major result is presented in the following theorem.

Theorem 4.2.5

(1) Under Hy, C; => Cauchy(0, 1);

(ii) under H,, TIC; = (6%/02)({,€p)-

Note that the Cauchy distribution is the Student t distribution with one degree of freedom. The
Cauchy test is free of nuisance parameters. Specifically its asymptotic distribution under the
null does not depend on the long run variance, so in contrast to the Phillips-Perron test and the
Park x? test, our test does not need the estimate of the long run variance. It is strongly
consistent against the unit root model. The asymptotic distribution of the test statistic does not
depend on the use of a specific set of superfluous regressors in general. Of course, the value of
the test statistic is going to be different through the matrices Q; and L for different g(-)
functions. The difference in the rate of convergence of the test statistic, essentially resulting
from Theorems (4.2.2)(ii) and (4.2.3)(ii), does not depend on any nuisance parameter, so the

power of the test in large samples is not related to any nuisance parameter.

However there is some arbitrariness in the construction of £* and C,;. For example let €
be any positive number, then the new statistic
nt

Tor (1+62'I"17%T6"A2) => Cauchy(0, 1) under Hy,.

But for large ¢, the term (1+€2T-17%T&X), although it asymptotically equals to 1 under Hy, can
be very large in finite samples. For small ¢, the term (l+52T"7§T&2), although it
asymptotically diverges under H,, can be very small in finite samples. So even though the test

is asymptotically invariant to a linear transformation of Y, in finite samples it can be very
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dependent on the way the test is constructed. Some simulation on the magnitude of

(14T 1925672) is collected in Table 4.3.2 for the test in Section 4.3.

Although the nuisance parameters asymptotically vanish under the null, they may affect
the power of the test in finite samples as they appear in the asymptotic distribution under the

alternative, cf. Theorem 4.2.5 (ii). For the moment, let

(it 1) = o N 721) = N(O, I)

then
NT _ NI -1.22\0>
Ci=—F==1HT S0
1 £ V3T [ ( 72T)&2A]
If (a'z/azA) is large, then there may be substantial size distortion. If (a’z/o'zA) is small, then the
power of the test in finite samples is low. This is confirmed by the calculation in Bierens

(1991a, Table 3). For the ARMA(1,1) process u, = ¢u, ; + €,-0¢, 1, ¢, ~ ID(0, 1),

2 _[10p| L¢" ]
(4.2.9a) od [M]z | 2[1-62+(6-0)(1-6)(1+6)] |

2 ) 1-¢2
4.2.9b o - [1_0 _Le
(4.2:90) ol L1-4] | 1-¢*+(6-¢)°
They are going to be used in the discussion of the simulation results.

4.2.4 Monte Carlo Simulation

The data generating process is the same as in Bierens (1991a),

(1-¢B)(1-pB) Y, = (1-0B) ¢, ¢, ~ NIID(0, 1) t=1,2 4T

¢ = {0,0.8,0.9,0.95}, p = {0,0.8,0.9,0.95,0.99,1}, and 6 = {0,0.5}, T = {100, 300, 500}. The
case of T = 500 is intended to capture some asymptotic properties of the test. In the formal

notation of equations (4.2.4) and (4.2.5),
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ifp=1, u, = AY,, (1-¢B)u, = (1-6B)e,
ifp<l, u, =Y, (1-¢B)(1-pB)u, = (1-6B)e,.

Note that the test is invariant to the coefficient b on the maintained trend in equations (4.2.4)
and (4.2.5), so it is set to zero in the simulation for simplicity. In the simulation, we set f(t) =
(1 t) to capture a linear trend, and g(t) = t2 for the spurious regressor, and 7 = 0.5 for the

construction of &(7).

Table 4.2.1 presents the results of the Monte Carlo simulation. The empirical size is
close to the nominal size except for the near-unit root case (p = 0.95, 0.99), or when the
stationary process has high persistence (¢ and p are high). However the test has almost no
power against the random walk model, which is not surprising. But the power against general
ARIMA models seems satisfactory. The test has some power to distinguish stationary processes
with moderate persistence (p = 0.8, ¢ = 0.8) from a genuine unit root (p = 1, ¢ = 0.8). Note
that the size and power results of our test with a maintained linear trend are very close to those
of Bierens (1991a) with no trend. The results with g(t) = t3 and g(t) = t° are similar, as

suggested by the theoretical arguinent, and are not reported.

The quasi-nuisance parameters in Equation 4.2.9 are numerically listed in Table 4.2.2.
This explains the low power against the random walk models and the substantial size distortion
for near-u-nit root models. For a random walk model, 02/ aﬁ is one, which makes the multiplier
(the term in the bracket) in Equation 4.2.8 small, resulting in not enough rejection of the null.
For near-unit root models (with both p and ¢ large), az/ai is huge, which makes the multiplier
in Equation 4.2.8 substantially larger than one, resulting in excess rejections of the null. As
Bierens (1991a) has pointed out, the power of the test is good against unit root alternatives with

strong persistence, but its power is low against alternatives with weak persistence.

Applying the filer (1-0.5B) to the series always reduces the quasi-nuisance parameters,
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and this also translates into size and power. For stationary processes with low serial correlation,
the reduction in (uz/azAu) is small, and the size is not affected much by the transformation. For
stationary processes with high persistence, the reduction is much larger. Although the relative
change is small, the size distortion is smaller after applying the filter. For an alternative model
with high persistence, applying the filter substantially reduces the nuisance parameter (02/03‘).
Since the nuisance parameter remains large, the power of the test is not affected. For an

alternative model with low serial correlation, applying the filter substantially reduces the

nuisance parameter.

The discussion above leads to the following recommendations: (i) if the series of interest
has high persistence and the first difference still has high persistence, then apply the filter (1-
0.5B); (ii) if the series itself has high persistence but the first difference of the series does not
have high persistence (near-unit root vs random walk), do the test both with and without the

filter, and be careful in interpreting the results; (iii) in other cases, whether one applies the filter

or not does not affect the results.

4.3 Tests Using Orthogonal Polvnomials

The key to constructing the Cauchy test is the derivation of two random variables that
are asymptotically normally distributed. The quality of the approximation of asymptotic
distribution in finite samples depends on the various FCLT’s. In the construction of £ in the
last section, only a fraction (7) of the observations are used. This approximation can possibly
be improved by using more observations in the construction of the partial sum. However the

partial sum of the OLS residuals quickly approaches zero (if an intercept is included in f(t)).

Therefore we must construct the normal quantity in other ways.

If the maintained trend f(-) and the superfluous trend g(-) are orthogonal, then from

Equation 4.2.7,
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(4.3.1) 3 = [Sg(t/T) gt/ T)]  Se(t/T)e,).

Therefore specification of the maintained trend is not necessary, as long as the superfluous trend
is known to be orthogonal to the possibly unknown true trend. If it were not for the quantity
&-AZ in the definition of £* which makes the test statistic invariant to a linear transformation,
then the true trend f(.) would be irrelevant. Bierens (1992b) uses a system of orthogonal
Chebishev polynomials to approximate the unknown trend f(-). When the approximation is

close enough, the variable addition approach can be used.

We can include multiple superfluous regressors in the auxiliary regression, and
orthogonalize (asymptotically) the coefficients on the superfluous regressors in the construction
of the Cauchy test. In this section, we represent the maintained trend by a set of orthogonal
polynomials; additional multiple orthogonal polynomials are used as superfluous regressors. The
test is constructed by using the coefficients on the superfluous regressors. The maintained trend

is assumed to be a linear time trend.

4.3.1 The Cauchy Test

Let the orthogonal polynomials be as given in Section 2.3.2. The asymptotic
distribution of the OLS estimate of the orthonormal regression, cf. Equation 2.3.8,
vy = Zhobipi r(t/T) + e,
is normal with the covariance matrix- being the identity matrix scaled by o2, cf. Theorem 2.3.1.
Let 9,7 = 52, YoT = 53 as in Section 4.2. Then the Cauchy test can be constructed the same as

in Section 4.2, The resulting Cauchy test statistic is denoted as C,.

4.3.2 A t-test
Since the coefficients of all the superfluous regressors are zero, if more superfluous

regressors are included in the regression, then the power of the test may be improved.
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Continuing the discussion in the last subsection, if k ( > 2) superfluous orthonormal polynomials

are included in the regression. The asymptotic IID normal coefficients estimates (b,, b3, -+,

bi41)’ can easily be used to construct a t-test.

b
Under Ho, ——k-lz-l_k’)z ~ t(k-l)'

i=3 %)

%]

A consistent t test can be constructed as in Equation 4.2.8, for example,
b2

AT
\IEi=3 bj

(43.2) C; = [1+T i slb76 7]
It is trivial to show that

under Hg, C2 =ty
under H,, T!C; = nondegenerate distribution.

Note that Bierens (1992b) has used a similar “approximate” t-test, where the maintained trend

f(-) is assumed to be unknown and is approximated by a set of Chebishev polynomials.

4.3.3 Monte Carlo Simulation

The results of Monte Carlo simulation on C, are presented in Table 4.3.1 The results in
general are the same as those for the earlier tests; namely the size is close to the nominal size
but the power against the random walk model is low. One advantage of the test is that it treats
the near unit root model as stationary (at the expense of also treating the random walk model

as stationary), in contrast to the Dickey-Fuller test that treats near unit root model as unit root

process.

Table 4.3.2 collects simulation results on the iagnitude of the multiplier
(1+T'17§T&2). The pattern in the sample mean of the multiplier roughly corresponds to the
pattern of empirical size and power in Table 4.3.1. Simulation shows that y,1 and v,¢ are

approximately distributed as normal in finite samples with equal variance; therefore, the size
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distortion and the lack of power of the test is caused by the ill behavior of the multiplier. Table
4.3.3 contains some statistics on the quality of approximation for the asymptotic distribution of
b in Theorem 2.3.1(1). By Theorem 2.3.1 with o?=1, all the entries in Table 4.3.3a
corresponding to p # 1 should be zero, and all the entries in Table 4.3.3b corresponding to p
# 1 should be one. Results in the table indicate that the asymptotic approximation is rather

poor in finite samples (T = 100 here).

Table 4.3.4 contains the simulation result on the t, test of Equation 4.3.2. Indeed the
test is more powerful than the Cauchy test, since the additional superfluous regressors provide

more information on the spurious nature of the trend under the unit root.

Given the low power of the test against the random walk model, the finding of a unit
root should be regarded as strong evidence for unit root, just as the rejection of unit root by the

Dickey-Fuller test should be regarded as strong evidence for stationarity.

4.4 Further Discussion and Qther Tests for Stationarity

Unit root tests are designed to distinguish different characterizations of trend in a
stochastic process, including stochastic trend (random walk) and deterministic trend (e. g. time
polynomial, polynomial with breaks, or seasonality). In order to test for the presence (unit root)
or the absence (stationarity) of stochastic trend, an adequate specification of the deterministic
trend is necessary. Overspecification of the deterministic trend does not affect the test
asymptotically. However, underspecification has serious consequences. Since all the unit root
tests rely on the notion that the variance of a unit root process increases linearly while the
variance of a stationary process remains constant, if there is any trend remaining in the series,
the test would tend to interpret it as evidence of nonstationarity, that is, a unit root in our
context. Therefore, a nonrejection of the unit root model by the traditional test does not

necessarily imply the existence of a unit root; similarly the rejection of the null of stationarity
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by our test does not necessarily imply the existence of a unit root. This is just like the existing
many classes of model specification tests. Since the test can have power against a class of
alternatives, the rejection of the null model only implies that the null model is not an adequate

characterization of the data; it does not necessarily imply the correctness of a specific alternative

model.

Since a process with seasonal unit root (complex unit root) has the same degree of
nonstationarity as a unit root process, our test also has power against the seasonal unit root
model. This reinforces our earlier point that the rejection of the null model does not necessarily

imply the validity of a specific alternative model.

Kahn and Ogaki (1991) propose a test for stationarity based on the asymptotic
distribution theory for their unit root test (Kahn and Ogaki, 1990). As for the x? test of Park
(1990), the need to estimate the long run variance makes the test consistent at rate T® 0<é<
1). While our test is consistent at rate T, its power against the random walk model in finite
samples is low. Note that the LM test for stationarity in Kwiatkowski, Phillips, Schmidt and

Shin (1992) is also consistent at rate T?.

The asymptotic distribution of our test statistic does not depend on the specification of
the maintained deterministic trend under both the null and the alternative. Suppose the
deterministic trend is a linear trend with a break in the intercept and/or slope and the break
point is known. Then the Cauchy test for stationarity around the breaking trend depends on
the break point, but its asymptotic distribution is still Cauchy. Such is not the case with the
traditional test for unit root. | The traditional test for unit root around a breaking trend is a
function of the break point; its asymptotic distribution is a random function of the break point,
cf. Perron (1989). In order to make the asymptotic distribution of the Perron-type test free of
the break point, the break point has been assumed to be deterministic but unknown. Since the

break point is unknown, it needs to be estimated. To account for the estimation of the break
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point, the modified Perron-type test statistic is taken as a continuous functional of the Perron-
type test in certain regions of the parameter space for the break point. By the continuous
mapping theorem, the asymptotic distribution of the modified Perron-type test is a functional of
the asymptotic distribution of the Perron-type test. It is free of nuisance parameter — the
break point. It is not clear how our test can be conducted for a deterministic but unknown

break point.

4.5 Summary and Conclusion

Both the famous Dickey-Fuller test and the Phillips-Perron test for u.nit root take the
unit root model as the null; the asympiotic distributions of the test statistics are nonstandard,
are dependent: on nuisance parameters, and are also dependent on the alternative model. Bierens
(1991a) constructed a test which takes the stationarity as the null model and the unit root with

drift as the alternative model. ‘The asymiptotic distribution is standard Cauchy.

Using the variable addition approach of Park (1990), we propose some generalizations of
the Bierens Cauchy test with maintained linear trend under both the null and the alternative.
Monte Carlo simulation indicates that the test has reasonable power to distinguish a stationary
process with strong persistence against a unit root process. Like the Dickey-Fuller test, it does

not have any power to distinguish the near-unit root process from a random walk.

The framework used in this chapter can also be used to test for stationarity around a
stochastic trend, i.e. cointegration, as in Engle and Granger (1987). But the power of the test is

likely to be very low, so we do not pursue it further here.
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Appendix
Proof of Theorem 4.2.1

Note that

TB = [T2g*(t/T)'g"(/T)I ' [Zg*(t/T)'e,)-

From the definition of the Riemann integral,

TISg*(t/T)g"(t/T) — [g™'g".

Under Hy, ¢, = u,,

(1/NT)Sg*(t/T)e, = o [g*'dW by Theorem 2.2.6 (ii)
T8 = of [g"'g"T [ [g'dW] ~ N(0, s?), by Theorem 2.2.6 (ii)
where s2 = o2 [ g™'g"]"! by Theorem 2.2.3 (i).
Under H;, ¢, = Ejuj,
T3/28g%(t/T)e, = o [g™'W, by Theorem 2.2.5(ii)
(ANTIB = of [g"gT [ [ &' W],

and sg can be calculated using Theorem 2.2.3(ii). a
Proof of Theorem 4.2.2

Note that

T¢ = (T/[Tr)) T/ 2£{T7ly;.

(i) Under H,,

V25Tl = oW(r),

where
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W(r) = W(r) — ([T J3rdW] ~ N(o, s?),
sf=r — ([5O[S 36,

Note that W(r) is different from the detrended Brownian motion W*(r) in Theorem 2.4.1,
because W*(r) is the limiting distribution of standardized partial sums under the assumption of
a unit root, while W(r) here is the limiting distribution under stationarity. From the above

results,

T”z{ = rlgW(r) ~ N(0, 1"20'25:2,).

The convergence of B in Theorem 4.2.1 (i) and € here is also joint, and their covariance is, from

Theorem 2.2.3,
s = T[T 8™ - (56 aLS 1S4

Define Q, as

2

87 8y
1 °13
Q=

S13 53
Then the result under review follows immediately.
(ii) Under H,,
T3/22[TTyx = o [ TW(r). by equation (2.4.3) and CMT

So,

(ANTE = 7lo JEW™(r).

Note that if the maintained trend is a linear trend, f(r) = (1 r), the superfluous trend is a
quadratic trend, g(r) = (r?), and ihe partial sum is the half-way sum, 7 = 1/2, then the

covariance s, is equal to zero. 0
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Proof of Theorem 4.2.3
(i) obvious from the definition of v, , 71 and L.

(ii) follows from Theorems 4.2.1 (ii) and 4.2.2 (ii),

T g T2r) = oL N([Je g1 [ g™dW), rlo [TW ()Y

Eo(6y, 6"

Proof of Theorem 4.2.4
First we study the asymptotic behavior of &"’A,

Y: =Y, =Tt/ T)(T ISt/ TYH(t/T)) [t/ T)'Y,)

e, — T Hi(t/T))[T ZH(t/T)'i(t/T)] [ZH(t/T)e,),s
AY: = Ae, —THf(t/T)—1f((t-1)/T))[T 1H(t/T)'f(t/T)) [SE(t/T) e,]
= Ae, — TN/ T)1/T)+O(T 2 [ D +o(1)][EH(L/T) e,],

where f“)(r) = df(r)/dr is the first order derivative.

(i) Under Hy, e, = u,.

AY; = Au, -
T2/ T)(1/T)+O(T A f £ +o(DIT 228t/ T) u,)
= Au, = T3 /T)( [ TeW(1) + oy (1)]
= Au, — O,(T%/?),

Note that

6% =TIzl ,(ayy)?
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= T'SL (8u)? + O(T3) = AT L ,Au,)0,(T/?).
By the Law of Large Numbers (LLN),
T au, 20, T (A0 2 63,

We have,
&A —— U'All'
From Theorem 4.2.3 (i),

- P
T 42 = 0.

Therefore £ - 757 2.0, and the desired result follows again from Theorem 4.2.3 (i).
(ii) Under Hy, e, = E;u;. Note that
AY; =u, - O(TV/Y),
.2 -
7a =T lg';l‘=2u'f
= T'E(Au,)? + OL(T™) = AT 'EL,u, O (TV),

T2 5y, 2o, Tl ul L ol by LLN.

We have,

The desired result follows by multiplying the numerator and denominator of £§* by T 1 and

using Theorem 4.2.3 (ii),

T.l'y T g
€= o P a
['4+T 2262 7 o€,

Proof of Theorem 4.2.5

(i) The result is immediate from Theorem 4.2.4 (i).
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(ii)) From Theorems 4.2.3 (ii) and 4.2.4 (ii), 7,7 diverges at rate T, and £" converges to a
nondegenerate distribution; therefore, their ratio C, diverges at rate T,

TICy = Ty /€™ = (02/02)(¢1C,)- o
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Table 4.2.1 Monte Carlo Simulation on the Cauchy Test in Theorem 4.2.5

¢ P
9 T 0.0 0.8 0.9 0.95 0.99 | 1.0
5% 10% | 5% 10% | 5% 10% | 5% 10% | 5% 10% A 10%
0.0(100}5.0 10.5 4.9 10.2] 7.0 14.6] 6.1 15.2 8.1 19.6 P.7 21.8
0.01300]5.5 9.9 5.1 10.8 5.8 11.1 5.5 11.8 9.7 31.8 [14.1 38.1
500 |5.4 9.45.7 11.8 6.1 11.2] 6.1 12.4] 11.4 36.4 P1.1 51.2
0.0]|100]3.6 8.16.4 11.6] 5.4 11.9] 7.3 15.0] 7.9 14.318.6 16.9
0.5|300}5.5 10.55.0 9.6/ 5.4 10.0] 5.1 10.8 7.4 16.5|9.5 18.7
500 14.5 9.214.9 9.5 5.1 10.3 6.0 11.7] 6.7 14.6 | 8.5 20.2
0.8 ] 100 5.5 17.7[ 10.1 36.7] 24.0 56.5 37.4 67.3 B9.8 67.1
0.0 { 300 4.9 10.3] 6.6 23.1} 19.6 49.2 59.4 81.9 5.3 83.8
500 6.7 13.0] 6.9 19.1/ 14.3 39.8/ 65.2 82.3 [15.7 88.9
0.8 1 100 5.0 10.7] 7.0 21.4[ 9.1 35.2[17.4 50.7 [i8.7 52.4
0.5 | 300 5.2 9.8 5.2 13.5| 8.5 32.4| 42.0 69.0 B2.8 74.5
500 5.7 11.8 4.8 10.5 6.7 25.5/ 51.8 74.5 3.0 81.3
0.9 [ 100 26.6 57.8 43.5 72.1] 58.8 78.8 59.3 80.0
0.0 { 300 18.8 48.9/ 46.1 71.8/ 79.7 89.4 B1.3 90.2
500 11.6 37.5/ 38.2 64.7| 81.3 90.4 B6.8 92.4
0.9 [ 100 13.9 42.5/ 28.4 63.0] 44.3 71.7 B5.4 73.5
0.5 | 300 10.3 32.233.2 61.9/71.1 84.8 6.9 87.5
500 6.7 21.8 25.3 53.2 76.6 88.3 83.4 91.6
0.95 100 61.1 80.8] 70.4 85.1 [72.7 86.0
0.0 | 300 68.9 83.5 86.4 92.3 90.0 95.4
500 65.5 80.9/ 89.2 94.6 P1.8 95.5
0.95 100 46.5 71.1] 61.6 80.1 p4.9 82.9
0.5 | 300 58.4 79.0| 82.6 92.1 B7.7 93.4
500 56.6 76.5 87.5 93.3 P0.3 95.8

Note: The numbers in each cell are the percentage of rejections in 1000 replications. The Monte
Carlo simulation results are based on 1000 replications of the following Data Generating

Process:

(1-¢B)(1-pB) Y, = (1-6B)e,, ¢, ~ NIID(0, 1)

where the pseudo-random numbers {¢,} are generated using the random number generator RAN

of RATS. The simulation is executed using (mainframe) RATS Version 3.11.
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Table 4.2.2 Values of the Quasi-Nuisance Parameters in Theorem 4.2.5

¢ ”2/”121 az/ozu
=0 0=0.5 =0 0=0.5
0.00 1.00 0.20 0.50 0.07
0.50 3.00 1.00 3.00 0.50
0.80 9.00 5.00 22.50 4.17
0.90 19.00 13.57 95.00 18.27
0.95 39.00 32.50 390.00 76.47
0.99 199.00 191.35 9950.00 1982.07

Note: For ARMA model, the quasi-nuisance parameter is defined by Equation 4.2.9.
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Using Orthogonal Polynomials

Table 4.3.1 Monte Carlo Simulation on the Cauchy Test
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Table 4.3.2 Monte Carlo Simulation

on the Multiplier (14T '931572)

é p

[} 0.0 0.8 0.9 0.95 0.99 1.0
0.0 | mean 1.0 1.1 1.4 1.8 2.2 2.2
0.0 | var 0.0 0.0 0.4 1.4 3.0 2.8
0.0 | mean 1.0 1.0 1.1 1.1 1.2 1.2
0.5 | var 0.0 0.0 0.0 0.0 0.1 0.1
0.8 | mean 3.1 5.8 8.9 12.4 11.9
0.0 | var 9.2 41.1 108.5 257.7 193.9
0.8 | mean 1.8 3.1 4.8 6.6 6.6
0.5 | var 1.3 8.0 25.1 55.4 56.3
0.9 | mean 10.4 15.8 22.7 23.9
0.0 | var 176.2 | 409.9 855.8 950.8
0.9 | mean 6.7 9.7 14.4 13.3
0.5 | var 63.4 156.6 351. 283.3
0.95 mean 24.5 36.3 36.0
0.0 | var 997 .4 2373.9 | 2528.8
0.95 mean 16.7 23.2 24.6
0.5 | var 486.2 911.3 975.5

Note: “mean” and “var” are the sample mean and sample variance, respectively, across 1000

replications of samples of 100 observations. For simulation setup, see note for Table 4.2.1.
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Table 4.3.3 Monte Carlo Simulation
on the Quality of Approximation of

the Asymptotic Distribution in Theorem 2.3.1

A. Sample Mean

é P
0 0.0 0.8 0.9 0.95 0.99 1.0
0.0 1 b, 0.01 -0.02 0.00 0.26 |- 0.97 2.87
0.0 | b, 0.01 0.17 -0.19 [- 0.49 0.06 {- 0.89
b, -0.06 0.16 -0.10 0.17 0.69 |- 0.65
0.0 [ b, -0.02 0.04 -0.19 0.17 [- 0.20 [- 0.84
0.5 | b, -0.01 0.11 0.03 0.05 (- 0.45 0.52
b, 0.01 0.03 -0.28 [- 0.19 [- 0.03 |- 0.06
0.8 | b, -0.29 -0.07 4.48 | 10.04 |- 9.54
0.0 | b, -0.30 -0.11 1.71 5.61 |- 1.46
b, 0.94 1.40 |- 2.50 2.59 3.33
0.8 b, -0.13 -0.62 [- 0.41 [-124.50 |- 2.33
0.5 | b, -0.16 0.67 |- 0.22 0.20 |- 2.64
b, -0.47 -0.50 0.36 |- 1.42 |- 2.07
0.9 [ b, -0.71 |- 1.04 3.30 | 53.06
0.0 | b, 2.43 |- 1.62 |- 2.43 |- 1.84
b, -0.23 |- 4.53 |- 2.36 | 0.83
0.9 | b, 1.16 0.22 [- 5.23 1.41
0.5 | b, -1.37 0.69 |- 1.85 |- 3.85
b, -0.76 0.39 2.21 2.22
0.95] b, -22.73 5.42 | 55.88
0.0 | b, - 3.54 5.55 0.65
b, - 4.25 | 10.79 |- 1.89
0.95] b, - 5.15 |- 9.66 |-22.63
0.5 | b, - 2.77 4.83 9.43
b, - 1.21 1.72 5.90
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B. Sample Variance

¢ P
0 0.0 0.8 0.9 0.95 0.99 1.0
0.0 | b, 1.01 23.97 | 89.80 [329.77 + +
0.0 | b, 0.98 20.68 | 68.76 |186.69 |645.53 |969.59

b, 1.04 19.19 | 55.23 [114.75 |229.89 |257.14
0.0 | b, 0.24 5.88 | 23.66 | 81.10 [830.41 +
0.5 | b, 0.27 5.51 | 18.48 | 52.48 [168.20 |249.28

b, 0.29 4.99 | 14.07 | 32.26 | 56.25 | 60.84
0.8 | b, 592.74 + + + +
0.0 | b, 511.80 + + + +

b, 435.57 + + + +
0.8 | b, 129.37 |598.78 + + +
0.5 | by 113.78 |454.52 + + +

b, 103.93 [333.86 |680.64 + +
0.9 | b, + + + +
0.0 :2 + + + +

a + + + +
0.9 [ by + + + +
0.5 | by + + + +

b, 981.49 + + +
0.95] b, + + +
0.0 Ez + + +

3 + + +
0.95) b, + + +
0.5 | by + + +

b, + + +

Note: (+) > 1000.
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Table 4.3.4 Monte Carlo Simulation on the t, Test in Equation 4.3.2

4 p
6 T [ 0.0 0.3 0.9 0.95 0.99 E 1.0
5% 10% | 5% 10% | 5% 10% ] 5% 10% | 5% 10% L 10%
0.0 100 [5.5 9.4 [11.7 20.0][ 19.3 30.7| 33.5 46.5| 47.7 58.9 BO.7 59.5
0.0300(|5.7 10.9 7.3 14.5 9.7 20.2 22.6 34.7| 58.1 65.7 B5.3 72.9
500 (4.4 8.6|7.6 14.5 6.4 13.1] 15.4 25.0{63.1 71.4 [r2.3 78.8
0.0 100 [4.0 7.8[8.5 15.8 10.9 19.4] 23.4 32.5| 30.6 42.7 B3.2 44.1
0.5|300 (4.5 9.3|6.8 12.9 7.0 13.1} 11.3 19.9 34.6 44.2 }42.0 51.8
500 {5.1 9.0{4.5 10.9 6.5 13.1 9.6 16.0{ 31.2 43.6 47.5 57.2
0.8 | 100 6.5 57.4] 67.8 74.7 82.1 85.4] 85.6 89.4 86.8 89.0
0.0 | 300 5.1 37.2] 53.4 62.9] 74.9 79.4/ 91.7 93.6 83.5 95.5
500 17.0 27.3] 43.6 53.5 67.7 75.1, 94.7 96.3 5.4 97.0
0.8 | 100 P4.9 35.6| 53.8 63.4] 65.9 73.2 75.0 81.1 [77.8 83.4
0.5 { 300 12.6 23.9 32.4 44.7| 62.8 69.7| 85.2 88.8 R8.7 90.6
500 9.8 19.3/ 24.3 37.6| 53.4 62.4] 89.2 91.7 p2.3 93.7
0.9 | 100 R1.8 85.8 90.5 92.4] 92.7 94.7 b4.0 95.2
0.0 | 300 75.4 80.3 89.0 91.5 95.6 96.4 B7T.6 98.4
500 68.3 73.7| 83.5 87.5 96.7 97.1 P7.5 98.2
0.9 [ 100 71.6 16.3 84.8 87.5 87.7 90.2 B9.2 91.5
0.5 {300 | 59.7 67.5/ 81.9 86.1 94.3 95.3 P5.9 96.8
500 50.5 59.2 79.5 84.5 96.6 97.6 P7.0 97.5
0.95] 100 94.2 95.2/96.1 97.3 P6.8 97.8
0.0 | 300 93.8 94.9/ 97.4 98.0 p8.9 99.2
500 93.8 95.1/ 98.4 98.4 P8.7 99.0
0.95] 100 38.4 90.8 94.4 95.8 P3.6 95.4
0.5 | 300 92.2 93.9/ 97.6 98.2 b8.1 98.3
500 91.6 93.6/ 97.6 98.6 P8.9 99.1
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CHAPTER 5

A TRANSFORMATION OF THE DICKEY-FULLER TEST
WITHOUT ESTIMATING THE LONG RUN VARIANCE

5.1. Introduction

Dickey and Fuller (1979, 1981) proposed the first class of statistical tests for unit root,
but the form of the tests depends on the short run dynamics of the series. Phillips (1987), and
Phillips and Perron (1938) nonparametrically corrected the Dickey-Fuller tests such that the

resulting test statistics are invariant to the short run dynamics, yet the asymptotic distributions

of the tests are the same as those of the original Dickey-Fuller tests.

But the nonparametric correction requires the estimate of the long run variance of the
series, which often needs prudent choice of lag truncation or bandwidth parameters. Such an
estimate often behaves very badly in finite samples. Different choices of the truncation lag

could lead to contradictory outcome of the tests, making inference difficult.

In this chapter, we show that there is a simple transformation of the Phillips-Perron
tests that is invariant to the long run variance parameter; therefore, its estimate is not
necessary. The asymptotic distributions of the new test statistics are tabulated by simulation.
The finite sample properties of the new tests are investigated by simulation, and comparison is
made with the Phillips (1987) and Phillips and Perron (1988) tests. All proofs in Sections 5.2.2
and 5.2.3 can be derived from those of Phillips (1987) and Phillips and Perron (1988), or from

Bierens (1992b), and therefore are omitted.
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5.2 The Phillips and Phillips-Perron Transformation of the Dickey-Fuller Statistic
5.2.1 The Test

Given a time series Y,, assuming that its deterministic component can be represented by

f(t/T)b, then we have,

(5.2.1) (1-pL)(Y -£(t/T)b) = u,,

where u, is assumed to satisfy Assumption 2.2.1. For |p| < 1, Y, is stationary around the

deterministic trend f(t/T)b. Recall the regression equation in Section 2.4,

(5.2.2) X, = f(t/T)b + pX,, + u,.

Let p be the OLS estimate of p. The asymptotic distribution of T(p-1) under unit root is given

by Theorem 2.4.1, which is partly reproduced as follows.
Theorem 5.2.1
(i) Under Hy, T(p-1) = [[W™dW + A] / fW*%
(ii) under H,, (p-1) = -(1-p) < 0:
where ), 02, aﬁ and W™ are as defined in Theorem 2.4.1, p* = E(Y:Y:_l)/E(Yzz),
Y? = Y£(t/T)b.

The asymptotic distribution under Hy involves A which depends on the unknown cumulated

short run dynamics through the long run variance o?. Note that the first part of the

distribution,
[w=dw/ [w=?

is free of nuisance parameters and is tabulated in Fuller (1976). Phillips (1987) and Phillips and

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Perron (1988) corrected the distributions for the second part, A/ IW‘Z, nonparametrically.

Their test statistics are, -

(5.2.3) Z = T(p-1) - §&%62)/ T =973

where §7 is an estimate of Y}, usually by detrending using OLS, and &2 and &‘2, are consistent
estimates of o2 and aﬁ, respectively.  Under H;, the detrending by OLS is consistent.
Consistent estimation of aﬁ is easy, but consistent estimation of o2 is more involved. One
popular consistent estimator is the.Newey and West (1987) estimator, also known as the
Bartlett estimator. If aﬁ and o2 are estimated using the OLS residuals, as recommended by
Phillips (1987), then the estimates are also consistent under the alternative. The asymptotic

distribution of the Z test are summarized below.
Theorem 5.2.2
(i) Under Hy, Z = [W=dW/ [ W%
(ii) under Hy, Z/T & - (1-p") = Yo202,) /02, < O;
where 02 = lim ’I“IE(S;r_:,ul_)z. o2, = lim T’IE;r=lE(uf,), u, =Yy -p"Ye,,

o2, = lim T'SL Ey,.

Therefore the Z test is consistent. But in finite samples, 32 could behave badly relative to its
asymptotic distribution. Table 5.2.1 presents simulation results for the Newey-West (1987)
estimator for some simple ARMA models. In all cases except p=0and p=0.8,8=0.5,5isa
substantial underestimate of o?. Because for some of the ARMA models the autocovariance
does not die out quickly enough, the lag truncation (m) in the Newey-West (1987) estimator
cuts off too much autocovariance at high lags. If 62 is underestimated, then the correction term
in the Phillips-Perron type of test is underestimated, so algebraically Z/T is overestimated,

resulting in lower power.
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5.2.2 Simulation Results

For comparison with the tests to be developed later in this chapter, we study the finite
sample properties of the Phillips (1987) and Phillips and Perron (1988) tests with Monte Carlo
simulation. The results are reported in Table 5.2.2. The simulation evidence agrees broadly
with the evidence in the literature. cf. Phillips and Perron (1988) and Schwert (1989). Namely,
the power of the Z test is fairly good, and the size of the test is close to the nominal size except
for the case of 8 = 0.5. When 6 = 0.5, the moving average polynomial partially neutralizes the

unit root, making the series appear stationary. Therefore, the null of unit root is rejected more

often than the nominal size suggests.

5.3.1 The Test

It turns out that there is an alternative transformation of the Dickey-Fuller statistic
T(p-1) that does not need the estimate ¢%. Since [WdW = (1/2)(W?(1)-1), cf. Phillips (1987)

or Bierens (1992b), rewrite the asymptotic distribution of Theorem 5.2.1 (i) as,

[(1/2)W3 1))/ [ W2 = (1/2)0%/[0? [ W?].

Then under Hy the second part can be consistently estimated by (1/2)&3/’1‘22?:29::"1.

Therefore define the new class of test statistics as,

(5.3.1) Q = T(p-D)+36%/ T L0972
Its asymptotic distribution is given in Theorem 5.3.1.
Theorem 5.3.1

(i) Under Hg, Q = [%Wz(l) - 1;]/_[‘\’\"2(r)dr =D;

(ii) under H,, Q/T L. (1-p7) +(1/2)“3-/°’§-'
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Therefore our new test is also consistent at rate T. But it does not need the estimate of the long

run variance o2

. Under H,, it approaches negative infinity. Following the convention in the
literature, for the cases of nointercept, only an intercept, and a linear trend, the asymptotic
distributions under H; are denoted as D, D, and D, respectively; the Phillips and Phillips and
Perron tests are denoted as Z, Z" and Z, respectively; and the new tests are denoted as Q, Q”
and Q, respectively. The asymptotic distributions under H are calculated by simulation, and

reported in Tables 5.3.1. In particular, the (1%, 5%, 10%) critical values are,

(0.00, 0.01, 0.05) for Q, (-4.39, -2.73, -1.95) for Qu and (-4.97, -3.06, -2.18) for Q,.

The fact that Z/T asymptotically is more negative than Q/T under H;, does not
necessarily mean that Z is more powerful, because the entire null distribution for Z lies to the
left of that for Q. A more negative test statistic for Z has to be compared against a more
negative critical value. Asymptotically, (Q -2)/T & (1/2)(¢%/c2,) under H,. Thus the
difference depends on the variance ratio which has nothing to do with the first order
autocorrelation coefficient of Y,. The larger is the variance ratio (03/65,), the more powerful is

the Z test. But the larger o2 is, the more difficult it is to estimate o2

5.3.2 Simulation Results

For p = 1, the Q test is sensitive to starting value while the Phillips Z test is not. For
example, separate simulation shows that, with § = 0 and a starting value of zero, the Q test
rejects the null of unit root 7.2% (at 5%) and 12.0% (at 10%); with # = 0 and a random
starting value from N(0, 20), i. e. a 20-step random walk, the Q test rejects the null 17.7% (at
5%) and 20.7% (at 10%). The Phillips Z test is robust to the starting value. It rejects 5% (at
5%) and 10.2% (at 10%) with a starting value zero, and rejects 4.5% (at 5%) and 9.3% (at 10
%) respectively. The reason may be that for the Q test, the critical values are confined to a
very small interval; a small disturbance in the starting value may result in a large change in the

test statistic relative to the critical values. For the Z test, such is not the case. Table 5.3.2
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reports the finite sample performance of our new tests Q in comparison with the Z class of tests.

For our tests, the size is close to the nominal size except for # = 0.5, but the Q“ and Q,
tests do not have any power for p > 0.9. This can be explained by asymptotics under the
alternative of stationarity. Table 5.3.3 presents some results on the causes of weak power. It is
true that asymptotically both the Z test and the Q test approach negative infinity. But
depending on the autocorrelation structure of the time series under study, it may take a huge

number of observations for the asymptotics to work.

For example, for (p, 6) = (0.9, 0), plim(Q,,/T) = -0.005, T -plim(Q,,/T) =-1.5 for T =
300 which roughly equals the 14% critical value. In order to reject the null at 5%, it is required
that T > 547. For (p, 8) = (0.9, -0.5). pIim(Q”/T) =-0.0016, T-plim(Q,/T) =-0.47 for T =
300. In order to reject the null at 5%, it is required that T > 1755. The numbers are even more

dramatic for p = 0.95 and Q,. See Tables 5.3.3b and 5.3.3c.

The existence of (low) power in the simulation reported in Tables 5.3.2b. and 5.3.2¢ is
the result of (fortunate) underestimation of p and &3_. In simulation with 1000 replications, for
(p, 8) = (0.95, -0.5), the mean of p,, is 0.964, and p,, is smaller than its probability limit p, (=
0.97) in 70% of the replications. For the same simulation, the mean of &3" is 19.632, and 6'!2”‘ is
smaller than its probability limit of af,u (= 22.56) in 71 % of the replications. But the net effect
of the two sources of the underestimation is the underestimation of the test statistic, which

results in the existence of (low) power for the Q,, test.

In contrast to the Q,, test, the result in Table 5.2.2b for the Phillips-Perron test Z is
much better. Therefore it seems that the additional correction term in Phillips and Perron test
helps to differentiate the alternative from the null. The reason that the Phillips and Perron test
performs better is that the additional correction term drives the plim(Z/T) further away from
zero. The test statistic, which asymptotically is the product of plim(Z/T) and T, is much

further away from zero than the Q test.
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5.4 Transformations of Q with Improved Power

5.4.1 The Test

The problem with the Q test in Section 5.3 is that although Q diverges to negative
infinity asymptotically, the probability limit of Q/T is too small in absolute value. If we can

find a random variable Ay such that,

(5.4.1a) Ap-1= op(l) under Hy,

(5.4.1b) A1 = oy(1) and A7 > 0 a. s. under H,

then Q/Aq is also a consistent test. The new test Q/AT has the same asymptotic distribution
as Q under the null. However the new test Q/A is mon;e powerful since it diverges to negative

infinity at a faster rate. One choice of A can be derived from the following theorem.
Theorem 5.4.1 Let p be as defined in Section 5.2, then

(i) under Hy, T -In(|p|) has the same asymptotic distribution as T(p-1);

(ii) under H,, T-In(}p}) > -o¢.

Proof: (i) T - In(|p|) can be rewritten as,

(5.4.2) T-ln(l]) = T-[In(|p])/In(5)] In(1+5-1)

= T(p-1) - [In(|))/1n(@)] {In(1+p-1)/ (p-1)]-

Since p = 1, P(p>0) — 1, that is, P(p = |p|) — 1. So

(5.4.3) In(|p])/in(p) = 1.

Since p-1 = OP(T'I),

(5.4.4) In(1+p-1)/(p-1) = 1.

The desired result follows immediately from results (5.4.2)-(5.4.4).
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(ii) By Theorem 5.2.1 (ii),

SO

1ol & 1ol < 1, In(121) 2 In(]p™}) < 0.

The desired result follows trivially. (n]

The reason that the absolute value of p is taken is that p may be negative for some data
generating processes, for example, when the series of interest Y, is an AR(1) process with a
negative autoregressive parameter. It is easy to see from the above theorem that,

(5.4.5a) 15T = P under Hg,

(5.4.5b) 15T £ 0 under H,.

Let Ay = Ii)|Tn, 1 € (0,1). Then In(Aq) = TP YT In(|p|)]. It is trivial that,
(5.4.6a) In(Ag) = OL(T™?) under Hy,

(5.4.6b) In(A1) = O,(T") and In(A7) P .

Therefore 5.4.1a and 5.4.1b hold. The choice of 5 controls the trade-off between the size
distortion under the null and the improvement in the power under the alternative. The smaller
7 is, the faster does In(A) in 5.4.6a converge to 0, the faster does A converge to 1 under Hy,.

The larger 7 is, the faster the In(Ag) in 5.4.6b diverges to negative infinity, the faster Ay

converges to zero.

5.4.2 Simulation Results

In the simulation, we set 7 = 0.5. For the case of the regression equation having an

intercept, Table 5.4.1 summarizes the empirical distribution of |p|\ﬁ under Hy whose probability
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limit is 1. Tables 5.4.2 contains results on the size and power of the improved Q test. We see
that the power of the test indeed improves dramatically, but at the cost of slightly larger size
distortion. However the trade-off between improved power and slightly larger size distortion

does seem to be a favorable one.

2.5 Summary and Conclusion

The class of tests for unit root proposed by Phillips and coauthors requires the
estimation of the long run variance, the estimate of which may not behave well in finite
samples. In this chapter, we propose another transformation of the Dickey-Fuller test statistic
that does not require the estimation of the long run variance. The critical values of the new
tests are calculated by simulation. Simulation shows that the size of the new test is close to the
nominal size, but the power of the new test is substantially lower than that of the Phillips and
Perron test due to the way the new test is constructed. In summary, the new transformation of
the Dickey-Fuller test statistics is not very successful. Finally a transformation of the Q test is

suggested, with the new test a significant improvement on the Q test.
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Table 5.2.1. Monte Carlo Simulation on the Newey-West Estimator

[7] n
0.00 0.30 0.90 0.95
2 0.99 6.60 13.43 | 25.81
0.0 |8 0.97 13.26 32.37 | 68.47
16 0.94 16.63 47.43 1 111.20
) 1.00 25.00 | 100.00 | 400.00
3 0.59 2.12 3.86 6.87
0.5 |8 0.36 3.64 8.50 | 17.32
16 0.30 4.42 12.16 | 27.67
00 0.25 6.25 25.00 | 100.00
2 1.88 14.57 29.82 | 57.58
-0.5 |8 2.06 30.10 72.52 | 150.78
16 2.06 38.35 | 106.04 | 244.74
00 2.25 56.25 | 225.00 | 900.00

Note: The Newey-West estimate of o2 is calculated as,

2 -1

o —j=-(m-

l)k(j/n]) EE:j.{-]Y;Y(,.j’

For consistency of 62, it is required that, m — ~ and m = o(\T), cf. Andrews (1991), Theorem

1(a) and Bierens (1992b). The row for m = =c is the true value of o2, being included only for

ccmparison. The simulation is based on 1000 replications of the data generating process,

(1-pL) y, = (1-0L)u,, u, ~ NUD(O, 1), t = 1,2, -

with starting value zero. The first 20 values of y, are discarded.

sample averages across 1000 replications.

, T, T = 320,

The numbers in the table are
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A. The Z Test
p
0 m 0.0 0.8 0.9 0.95 1.0
5% 10% 5% 10% |5% 10% 5% 107% 5% 10%
0.0] 0/100.0 100.0{100.0 100.0[100.0 100.0] 97.1 100.0| 4.9 10.4
2(100.0 100.0(100.0 100.0{100.0 100.0| 96.5 99.9| 5.1 10.3
41100.0 100.0]100.0 100.0{100.0 100.0}| 96.4 99.9| 5.1 10.3
8/100.0 100.0/100.0 100.0]/100.0 100.0{ 95.6 99.8] 5.4 11.1
16{100.0 100.0/100.0 100.0{100.0 100.0| 95.3 99.5| 6.0 11.4
0.5 2{100.0 100.0{100.0 100.0(100.0 100.0[/100.0 100.0{25.6 34.1
4(100.0 100.0(100.0 100.0(100.0 100.0§ 96.5 99.9/22.8 31.0
8!100.0 100.0{100.0 100.0{100.0 100.0]100.0 100.0|24.2 31.6
16|100.0 100.0(100.0 100.0[100.0 100.0}100.0 100.0|30.0 36.4
-0.5] 2/100.0 100.0100.0 100.0{100.0 100.0| 91.4 98.4] 2.8 7.4
4i100.0 100.0{100.0 100.0|100.0 100.0{ 91.8 98.6| 3.7 7.8
8(100.0 100.0{100.0 100.0}100.0 100.0| 90.6 98.5| 3.9 7.9
161100.0 100.0(100.0 100.0{100.0 100.0| 86.7 98.0| 3.6 7.3
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B. The Z“ Test

p
6 m 0.0 0.8 0.9 0.95 1.0
5% 10% 5% 10% |5% 10% |5% 10% | 5% 10%

0.0 [0 [100.0 100.0 [100.0 100.0 [{00.0 100.0 | 75.1 88.5| 6.2 10.9
2 [100.0 100.0 [100.0 100.0 [100.0 100.0 | 75.1 89.4| 6.1 10.9
4 1100.0 100.0 [100.0 100.0 | 99.9 100.0 | 75.7 89.1| 6.4 10.9
8 [100.0 100.0 {100.0 100.0 | 99.9 100.0 | 75.7 89.4| 6.4 12.0
16 [100.0 100.0 {100.0 100.0 | 99.9 100.0|77.4 90.4| 7.0 12.5

0.5 [ 2 100.0 100.0 [100.0 100.0 [100.0 100.0 [100.0 100.0 | 38.7 49.1
4 [100.0 100.0 {100.0 100.0 [100.0 100.0 [100.0 100.0 | 37.7 75.0
8 {100.0 100.0 {100.0 100.0 {100.0 100.0 {100.0 100.0 | 40.8 48.9
16 [100.0 100.0 {100.0 100.0 {100.0 100.0 100.0 100.0 | 50.2 58.0

-0.5 | 2 [100.0 100.0 [100.0 100.0 | 99.3 100.0 | 59.0 78.6 1 2.6 6.5
4 [100.0 100.0 [100.0 100.0 | 99.4 100.0 | 61.6 81.4| 3.1 7.5
8 [100.0 100.0 {100.0 100.0 | 98.9 100.0 | 59.7 80.8| 3.0 7.8
16 100.0 100.0 {100.0 100.0 [ 97.0 99.6 (50.5 75.1( 2.6 8.0
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C. The Z_ Test

P
0 m 0.0 0.3 0.9 0.95 1.0

5% 10% 5% 10% |54 10% |5% 10% 5% 10%
0.0 [ 0]100.0 100.0|100.0 100.0| 97.9 99.7{41.5 63.6 |5.7 10.8
21100.0 100.0[100.0 100.0{ 97.8 99.7(/43.7 65.5 |6.6 11.1
4{100.0 100.0|/100.0 100.0| 97.8 99.7/46.5 65.8 |6.7 12.0
8/100.0 100.0/100.0 100.0| 97.7 99.7]/49.4 66.2 |6.6 13.0
16{100.0 100.0{100.0 100.0| 98.6 99.7/49.6 68.2 |7.3 13.3
0.5 | 21100.0 100.0[100.0 100.0[100.0 100.0{99.8 99.9 |61.5 70.5
4(100.0 100.0{100.0 100.0/100.0 100.0/99.8 99.9 |61.6 69.9
8(100.0 100.0[100.0 100.0(100.0 100.0/99.9 100.0|67.9 74.6
16/100.0 100.0(100.0 100.0{100.0 100.0[/100.0 100.0{78.5 83.8
-0.5] 2/100.0 100.0[100.0 100.0| 83.5 95.7| 24.4 41.5| 2.1 4.5
4{100.0 100.0/100.0 100.0} 86.7 96.3| 26.9 45.7| 2.7 5.4
8(100.0 100.01100.0 100.0| 82.0 94.3]| 24.7 44.7| 2.5 5.3
16/100.0 100.0| 99.7 100.0| 61.0 &6.8| 12.6 33.2| 1.1 4.0

The simulation is based on 1000 replications of the following DGP,

(1-pL) y, = (1-0L)u,, u, ~ NHD(O, 1),t =1,2,..., T, T = 300.

The long run variance estimator is the Newey-West (1987) estimator using OLS residuals.
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Table 5.3.1. Simulated Critical Values

A. The Distribution D

a=PD<q)
ax100 q ax100 q
0 (min) 0.000 100 (max) 8.048
1 0.001 99 4.226
2 0.002 98 3.595
3 0.005 97 3.250
4 0.008 96 2.986
5 0.012 95 2.296
6 0.017 : 94 2.651
7 0.025 93 2.532
8 0.032 92 2.423
9 0.041 91 2.315
10 0.050 90 2.217
15 0.106 85 1.853
20 0.187 80 1.618
30 0.368 70 1.271
40 0.575 60 1.011
50 0.787 50 0.787
B. The Distribution D,
a=P(D,<q)
ax100 q ax100 q
0 (min) -8.90R8 100 (max) 7.999
1 -4.394 99 4.438
2 -3.670 98 3.655
3 -3.247 97 3.267
4 -2.938 96 2.919
5 -2.733 95 2.700
6 -2.552 94 2.529
7 -2.376 93 2.357
8 -2.204 92 2.209
9 -2.068 91 2.086
10 -1.950 90 1.989
15 -1.470 85 1.527
20 -1.122 20 1.185
30 -0.623 70 0.661
40 -0.255 60 0.270
50 0.001 50 0.001
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C. The Distribution D,

= P(D, <q)
ax100 q ax100 q
0 (min) -12.078 100 (max) 10.247
1 - 4.973 99 4.813
2 - 4.091 98 4.086
3 - 3.668 97 3.646
4 - 3.370 96 3.313
5 - 3.055 95 2.987
6 - 2.816 94 2.755
7 - 2.627 93 2.546
8 - 2.454 92 2.376
9 - 2.310 91 2.215
10 - 2.179 90 2.086
15 - 1.553 85 1.560
20 - 1.161 80 1.162
30 - 0.574 70 0.631
40 - 0.204 60 0.251
50 0.010 50 0.010

The simulation is based on 10000 replications of samples of 1000 observations.
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Table 5.3.2. Monte Carlo Simulation on the Q Test

A. The Q Test
4
0.00 0.80 0.90 0.95 1.00
5% 10% 5% 10% 5%  10% 5% 10% 5% 10%
0.0 100.0 100.0 | 99.8 99.8 | 93.9 94.2 1 73.5 75.5 7.7 12.6
0.5 100.0 100.0 [100.0 100.0 [100.0 100.0 | 99.9 99.9 | 25.9 27.1
0.5 100.0 100.0 | 95.6 95.9 |77.8 178.2 | 58.4 61.1 5.1 10.5
B. The Qu Test
p
0.00 0.80 0.90 0.95 1.00
5% 10% 5%  10% 5%  10% 5% 10% 5% 10%
0.0 100.0 100.0 | 97.2 99.2 |25.1 41.31] 5.0 9.7 5.6 11.8
0.5 100.0 100.0 |100.0 100.0 |l00.0 100.0 | 96.7 98.2 | 20.5 29.5
0.5 100.0 100,01 26.6 aR. 4| 2.8 70| 2.0 5.1 5.1 11.5
C. The Q, Test
p
0.00 0.80 0.90 0.95 1.00
5% 10% 5%  10% 5%  10% 5% 10% 5% 10%
0.0 100.0 100.0 | 96.7 98.9 | 25.0 44.0]| 5.8 12.9 5.8 10.0
0.5 100.0 100.0 [100.0 100.0 [100.0 100.0 | 97.6 98.6 | 49.8 61.2
0.5 100.0 100.0 | 21.8 46.3 ]| 2.2 8.2 1.7 4.0 5.2 10.2
128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.3.3. The Asymptotics for the Power of the Z and Q Tests

A. - plim(Z/T) and - plim(Q/T)

[ )
0.00 0.80 0.90 0.95
Z Q Z Q Z Q Z Q
0.0 1.000 0.500 | 0.200 0.020 |0.100 0.005] 0.050 0.001
0.5 0.504 0.180 0.068 0.006 0.033 0.002 0.016 0.000
-0.5 1.176 0.980 1.080 0.180 1.005 0.069 0.756 0.002

Note: The numbers in the table are the probability limit of Q/T and Z/T. The minus sign is

omitted for simplicity.

B. Minimum Number of Observations at which

the Z,, and Q,, test Are Significant at 5 %

6 P
0.00 0.80 0.90 0.95
Zu q 7] Zu Qu Zu Qu lﬂ Q_u_
0.0 15 6 72 137 143 547 285 2187
0.5 13 3 14 16 15 40 19 122
-0.5 29 16 208 435 138 1755 899 7052

The numbers in the table are calculated as [5% critical value/Plim]+1, where plim is from the

previous table.
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C. Minimum Number of Observations at which

the Z_ and Q, test Are Significant at 5 %

[ p
0.00 0.80 0.90 0.95
ZLL Qu Zu Qu Zu Qu Zu Q“_
0.0 22 7 108 153 215 612 430 2445
0.5 19 4 20 17 22 45 29 136
-0.5 43 17 314 436 661 1962 1355 7884

The numbers in the table are calculated as [5% critical value/Plim]+1, where plim is from the

previous table.

Table 5.4.1 The Empirical Distribution of Iblﬁ

Note: The simulation is based on 1000 replications of the following data generating process,

Y, =Y., +u,u ~ NID(O, 1),t=1,2-T,

with Y, = 0, T = 300.
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Table 5.4.2. Monte Carlo Simulation on the Improved Q Test

A. The Q Test
p
0.00 0.30 0.90 0.95 1.00
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
0.0 100.0 100.0 | 99.8 99.8 | 93.9 93.9 ] 73.0 73.9 7.5 11.8
0.5 100.0 100.0 [100.0 100.0 [100.0 100.0 | 99.9 99.9 | 25.7 26.4
0.5 100.0 100.0 | 95.6 95.6 | 77.3 77.8 | 58.0 59.7 4.9 9.9
B. The Q” Test
p
0.00 0.80 0.90 0.95 .00
5% 10% 5%  10% 5% 10% 5% 10% 5% 10%
0.0 100.0 100.0 | 99.8 99.8 | 86.4 89.3 | 34.2 42.9 | 13.4 18.7
0.5 100.0 100.0 [100.0 100.0 (100.0 100.0 | 99.9 99.9 | 48.9 52.8
0.5 100.0 100.0 | 92.3 03.4 | 32.1 43.6 | 10.6 15.0 | 10.6 15.9
C. The Q, Test
P
0.00 0.80 0.90 0.95 .00
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
0.0 100.0 100.0 | 99.9 99.9 | 88.2 90.9 | 42.2 50.2 16.9 23.8
0.5 100.0 100.0 [100.0 100.0 |100.0 100.0 [100.0 100.0] 80.7 82.7
0.5 100.0 100.0 | 92.4 94.4 | 34.9 46.6 | 12.2 17.7 13.0 19.3

The simulation is based on 1000 replications of the following DGP,

(1-pL) y, = (1-6L)u,, u, ~ NID(, 1), t = 1,2, .-, T, T = 300.

n in Equation 5.4.6 is set at 5 = 0.5.
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CHAPTER 6

TREND, STATIONARITY AND UNIT ROOTS
IN MACROECONOMIC TIME SERIES

Nelson and Plosser (1982) applied the Dickey-Fuller 7 test to 14 annual U.S.
macroeconomic time series; the null model of unit root was rejected only for the unemployment
series. Loosely speaking, the DF 7 test “finds” unit root in all macroeconomic time series except
the unempleyment rate. That finding has been interpreted as evidence supporting the real
business cycle theory which argues that the permanent technological shocks to the economy are
the driving force of the business cycles. However, statistically it can be true that the null model
of unit root was not rejected just because the test does not have enough power to distinguish the
null model from the alternative model. The Nelson-Plosser data set serves as an ideal
laboratory for contrasting different unit root tests. Recently Schotman and van Dijk (1991)
extended the Nelson-Plosser data set up to 1988 in studying the test for unit root in a Bayesian

framework.

In this chapter, we apply the new tests developed in the previous chapters to the

extended Nelson-Plosser data set and the Post-War quarterly real GDP series.

6.2 Description of the Data

The original Nelson-Plosser data set contains 14 historical annual macroeconomic time
series. All series end at 1970 with starting dates from 1860 to 1909. The 14 time series are, (1)

real GNP, (2) nominal GNP. (3) real per capita GNP, (4) industrial production, (5)
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employment, (6) unemploy-ment rate, (7) GNP deflator, (8) consumer price index, (9) nominal
wages, (10) real wages, (11) money stock. (12) velocity, (13) bond yield, and (14) common stock
prices. The extended data set ends at 1988. We also analyze the Post-War quarterly real GDP

(in 1987 dollars) which is from 1947:1 to 1992:3. All of the series except the bond yield are in

logarithms.

All of the series are plotted in Figure 6.1. We see that all the series (except
unemployment rate) display strong trends (either linear or quadratic), which makes unit root
with drift and trend stationarity the interesting competing hypotheses. For this reason, a linear
trend is included as part of the null hypothesis for all the series except unemployment. Only an
intercept is included for the unemploynient series. To isolate the effect of the new tests from

that of the new observations, both the original Nelson-Plosser data set and the extended data set

will be used.

6.3 Testing for Linear Trend Stationarity and Unit Root

The results of the traditional unit root tests on the extended Nelson-Plosser series are
summarized in Table 6.3.1. As in many other studies, the results can be summarized as follows:
(i) there is strong evidence against unit roots in Industrial Production (IP) and Unemployment
Rate (UNEMP); (ii) there is some evidence against unit roots in Real GNP (RGNP), Per Capita
Real GNP (PCRGNP), Employment (EMP); (iii) there is no evidence against unit roots in the
rest of the series. The three groups of series above will be called the Groups (i), (ii) and (iii)

series respectively in the following discussion.

The results using the CUSUM test, the Fluctuation test and the modified DF test are
reported in Table 6.3.2. The results from the CUSUM and Fluctuation tests can be summarized
as follows: (i) there is strong evidence against linear trend stationarity for the Group (iii) series

above; (ii) there is no evidence against linear trend stationarity for the Groups (i) and (ii) series
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above. The traditional tests for unit roots and our CUSUM tests for stationarity paint similar
pictures in terms of evidence for and against stationarity (or unit root). Note that the evidence
against linear trend stationarity can be interpreted either as evidence for a breaking trend or as

evidence for unit root.

However, the modified DI test does not reject the null of unit root for any series,

reflecting the weak power of the test.
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Figure 6.1 The Extended Nelson-Plosser Economic Time Series
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Figure 6.1 Continued

According to our Cauchy tests in Table 6.3.3, the null model of linear trend stationarity
is strongly rejected for nominal GNP (GNP), Consumer Prices (CPI) and Velocity (VEL), and
marginally rejected for GNP Deflator (GNPDEF) and Stock Prices (SP500). After applying
the MA filter (1-0.5B), the stationarity of GNPDEF is no longer rejected. But the evidence

against stationarity remains strong for GNP, CPl and VEL, and that for SP500 still remains

marginal.
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Figure 6.1 Continued

Summarizing the results of the tests so far, there is strong evidence against linear trend
stationarity (there is no evidence against the unit root) for Group (iii) series, but there is no
evidence against linear trend (there is some or strong evidence against the unit root) for the rest

of the series.
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Figure 6.1 Continued

6.4. Breaking Trend Analysis

The evidence against linear trend stationarity may be due to either a break in the linear
trend, a higher order trend, or a unit root. If the rejection is due to a break in the trend, then
after specifying the correct break in the trend, there should be no evidence against stationarity
left in the series. If the rejection is due to a unit root, then evidence against stationarity should
remain no matter what kind of break is specified. The reason is that a unit root process is
equivalent to a stationary process with a break in each time period. Using the methodology in

Chapter 3, we test for stationarity with breaks in linear trend. The break fraction is assumed to
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be 10%, 20%,: -+, 90% of the sample, since these are the break fractions for which critical values

are available.

The results for the break trend analysis are presented in Table 6.4.1. Except for the
extended CPI series, for the series for which the linear trend stationarity is rejected in the last
section, there exists at least one breaking trend such that the stationarity is not rejected at the
5% significance level. The location of the break for which the CUSUM statistic is the smallest is
called the “optimal” break point. Because of the endogeneity of the search for the break point,
the critical values need to be adjusted. The correct critical values are calculated in Chapter 3
and are given in the last column of Tables 3.2.5 and 3.2.6. The minimum CUSUM statistic
(mCU) in the last column of Table 6.4.1 should be compared with this set of critical values.
Except for the extended CPI series, there is no evidence against breaking trend. Note that the
long run variance estimate used in the CUSUM test is from the Adaptive QS estimator which
improves the power of the test; therefore, the evidence here for breaking trend is indeed very

strong.

For comparison with previous work on breaking trend, we list the “optimal” break
fraction in Table 6.4.2. The “optimal” break fraction is in broad agreement with that in Perron

(1989) that the Great Depression is the major cause of break.

6.5. Summary and Conclusion

Most of the traditional tests for unit root do not reject the unit root hypothesis for most
of the Nelson-Plosser series. Various tests for stationarity that are developed in earlier chapters
reveal very strong evidence against linear trend stationarity for most of the series. However,
when a break in the linear trend is specified, the evidence for unit root, or against stationarity,
almost no longer exists. In this sense, our new CUSUM test is in agreement with the Perron

approach. Note that the empirical results in this chapter show that the modified Dickey-Fuller
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test introduced in Chapter 5 has very little power.

The evidence for breaking trend in this chapter, as well as that in the earlier literature,
warns against the common practice of testing for unit root against a linear trend and, if unit
root is not rejected, continuing to test for cointegration. Care should be taken when deciding
how best to model a macroeconomic time series. It might be that the distribution theory with a

breaking trend provides a better approximation to the finite sample distribution than that under

the unit root.
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Table 6.3.1 Application of Traditional Tests for Unit Root

to the Extended Nelson-Plosser Data Set

A. The Dickey-Fuller Tests

T, e
Variable | k=2 x=4 k=8 k=2 k=4 k=8
RGNP 3.35% 2.88 2.74 25.54%x 22,27 xx* 56 . 20%%x*
GNP 1.74 1.25 2.20 7.40 4.40 19.42%x*
PCRGNP | 3.44x%x 3.02 2.91 26.77Tx% 25.16%x% 96 . 36%xx
1P 3.33% 3.22x 2.85 23.80%% 26.63*x* 31.33%x%x
EMP 2.87 3.38% 3.65%x% 19.41x% 24.95%% 157 .93%%x*
UNEMP | 3.41x%x 3.45%xx  3,30%xk | 26.56%%x 39.48#xkx 190, 0Oxxkx*
GNPDEF | 1.63 1.45 1.61 6.65 6.16 14.30
CPI 0.59 1.77 1.49 1.54 3.78 5.38
WAGE 2.12 1.91 2.26 9.69 9.86 33.32%x%x
RWAGE | 1.45 1.09 0.86 7.32 5.78 6.30
MONEY | 2.51 2.64 3.00 16.28 22.91%x T63.82%xx
VEL 1.32 1.19 1.36 3.99 2.74 2.92
BOND 1.37 1.81 0.31 4,28 8.88 1.01
SP500 1.92 1.63 1.16 8.54 6.89 4.50
QRGDP | 2.36 1.98 2.21 11.98 9.26 10.40
B. The Phillips-Perron Tests
Z(t'r) Z(ar)
Variable | k=4 k=7 k=10 k=4 k=7 k=10
RGNP 2.76 2.58 2.38 13.90 11.97 9.93
GNP 1.54 1.54 1.56 5.16 5.17 5.30
PCRGNP| 2.85 2.67 2.48 14.53 12.59 10.49
IP 3.34x% 3.16% 3.08 21.02x% 18.67* 17.55
EMP 2.76 2.61 2.50 14.87 13.25 12.09
UNEMP | 3.84%x*x 3.7Tdxx*x 3.Glkxx| 26.48%%x 25,05%%x% 23, 00xx*x*
GNPDEF| 1.39 1.48 1.53 4.28 4.80 5.10
CPI 0.30 0.37 0.39 0.73 0.93 0.97
WAGE 1.83 1.88 1.91 6.78 7.15 7.37
RWAGE | 1.33 1.25 1.26 5.52 5.04 5.11
MONEY | 1.94 2.07 2.08 8.66 9.73 9.78
VEL 1.56 1.44 1.39 4.17 3.43 3.15
BOND 1.57 1.46 1.39 5.18 4.56 4.12
SP500 1.90 1.68 1.70 T.77 6.20 6.33
QRGDP | 1.80 1.80 1.73 6.97 7.00 6.54
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Note: (1) The data are the annual macroeconomic time series used in Nelson and Plosser (1982),
and extended up to 1988 by Schotman and van Dijk (1991). The last series is the post-War
quarterly real GNP from Citibase.

(2) All the series used in the unit root test are in logarithms except the bond yield (BOND).

(3) 7 and « are the Augmented Dickey-Fuller t and T(p-1) statistics with a linear trend (no
trend for UNEMP). Z(t) and Z(«) are the corresponding Phillips-Perron corrected t and T(p-1)
statistics. The negative signs on the values of the test statistics are dropped for the ease of
presentation.

(4) The asymptotic critical values at 1%, 5% and 10% significance levels for the test statistics
are, respectively,

for Ty and Z(t"), -3.43, -2.86, -2.57, for r_ and Z(t,), -3.96, -3.41, -3.12,

for a, and Z(a“), -20.7, -14.1, -11.3 for a, and Z(a,), -29.5, -21.8, -18.3.

(5) The corrections for Z(t) and Z(«) are calculated using the Newey-West estimator with

window width k.

(6) (*, **, *»*) indicate being significant at (10%, 5%, 1%) respectively.
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Table 6.3.2 Application of the CUSUM and the Fluctuation Test for Stationarity

and the Modified Dickey-Fuller Test (Q) for Unit Root

A. Nelson-Plosser Data Set

CUSUM Fluctuation
(7=0.15) (r=0.15)

Variable CU RS FL, Q

RGNP 0.73 1.33 3.21 -0.75
GNP 2.81%%x* 4 ,48%%x 9.33%%kx 0.19
PCRGNP 0.55 1.04 2.47 -0.99
IP 0.54 0.95 1.78 -1.49
EMP 0.67 1.30 2.90 -0.66
UNEMP 0.50 0.72 1.12 -2.11
GNPDEF  2.32x%xx 4., 43%%% 8.56x%* -1,08
CPI 4.906%%x% 9. 26%%* 19.81kkx 0.98
WAGE 2.55%%x 4. 35%*x T.72%xx -0.01
RWAGE 0.71 1.34 3.29 -1.60
MONEY 2.09% %% 3. 49%xx 7.06%x%xx -0.04
VEL 4, T%xx 9. 14%%xx 15.79%%x 0.14
BOND 3.40%x* 6.68%%x 10.24% %% 7.86
SP500 2.48%xx% 3. 80%%x 7.22xxx -0.03
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B. Extended Nelson-Plosser Data Set

CUSUM Fluctuation

(r=0.15) (r=0.15)
Variable CU RS FL, Q
RGNP 0.44 0.75 2.13 -1.30
GNP 4.53%xx T« Ddkkk 14.28% %% 0.34
PCRGNP 0.35 0.66 1.97 -1.60
IP 0.48 0.92 1.94 -1.54
EMP 0.51 0.92 2.70 -0.52
UNEMP 0.39 0.68 1.42 -2.69
GNPDEF  5.38%xx% 10.10%%x  17.60%%* 0.30
CPI 6. 88k%x 13.23%%x*  16.09%xx 2.17

WAGE, 4,07 *%* T.00%x%x 12.83%%x 0.00
RWAGE 3.52%%% 6.65%x*x  9.13%xx 2.49
MONEY 2.95%%* 5.03%x%x 7 « 48k x 1.16

VEL 8.01xxx 15.62%%x 31.04%%xx -0.68
BOND 5.33%xx O.81*%x 18.33%xx% 0.19
SP500 4, 2T k%% To12%%xx  15,.42%xx% 0.26

QRGDP 8. 48k *xx 15.72%%x  34.35%%x% 0.51

Note: The long run variance is estimated using the Adaptive Andrews QS estimator. (%, **,

*+x) indicate being significant at (10%, 5%, 1%) respectively.
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Table 6.3.3 Application of The Cauchy Tests With Linear Trend

to the Extended Nelson-Plosser Data Set

Without MA filter With MA filter (1-0.5B)
Variable C; C, C, C,
RGNP - 1.46 - 1.32 - 0.92 - 0.67
GNP - 6.28 181.98x*xx - 5.45 -13.33%x
PCRGNP| - 1.64 - 1.26 - 1.21 - 0.69
IP - 1.41 - 1.70 - 0.89 - 1.36
EMP - 1.91 - 0.47 0.76 - 0.14
UNEMP 0.06 - 0.11 0.01 - 0.24
GNPDEF 6.93x% T.43% 4.37 3.74
CP1 53.068x%x 20.66%x* 17.22%x% T79.27 % %%
WAGE - 5.59 5.59 - 5.15 5.65
RWAGE 1.37 1.62 0.98 0.89
MONEY 1.90 2.13 2.54 1.30
VEL 8.65x% 46.7T0xx 6.70 406 . 85% %%
BOND 4.78 4.86 3.26 2.89
SP500 4.37 T.67* 2.65 6.95%
QRGDP 25.27 %% 21.82x%x 61.52%x% 17.63%x%

Note: C, and C, are Cauchy tests; C, is from Theorem 5.2.5 based on residuals; C, is based on
orthonormal polynomial regression. The critical values for a two-sided test at (1%, 5%, 10%)
significance levels are (63.66, 12.71, 6.31), respectively. (*, **, *x*) indicate being significant at

(10%, 5%, 1%) respectively.
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Table 6.4.1

Results on Breaking Trend and Unit Root

A. Nelson-Plosser Data Set

7 (break fraction)

Variable | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mCU
RGNP 0.46 0.39 0.23 0.28 0.31 0.30 0.41 0.50 0.48 | 0.23
GNP 2.81% 2.32% 0.31 0.27 0.42 0.36 1.24x% 2.09x% 2.40%| 0.27
PCRGNP| 0.35 0.30 0.27 0.29 0.29 0.32 0.49 0.55 0.53 | 0.27
IP 0.49 0.43 0.40 0.38 0.42 0.32 0.47 0.53 0.55 | 0.32
EMP 0.3¢ 0.30 0.28 0.27 0.32 0.64 0.75% 0.64 0.58 | 0.27
UNEMP | 0.42 0.43 0.41 0.52 0.53 0.67 0.37 0.43 0.48 | 0.37
GNPDEF| 3.06% 2.86% 2.71x 2.17 0.34 1.44% 1.81% 1.54% 1.96%| 0.34
CPI 1.72% 0.47 0.33 0.36 0.36 2.73% 3.57* 4.12% 4.58«| 0.33
WAGE 2.83% 2.62% 2,46« 0.25 0.39 1.91x 1.00% 1.84x% 2.29x| 0.25
RWAGE| 0.36 0.31 0.27 0.29 0.29 0.35 0.43 0.51 0.56 | 0.27
MONEY | 2.00% 1.75% 1.62* 1.50% 0.35 1.99x% 2.83% 2.36x 2.33x%| 0.35
VEL 1.19« 0.46 0.40 0.36 0.31 0.42 0.43 0.55 0.51 0.31
BOND 2.97%« 3.04x 3.48x 2.50% 0.37 0.37 2.03*% 2.55% 2.69%| 0.37
SP500 2,12« 1.01 0.90% 0.44 0.38 0.31 0.23 0.29 0.46 | 0.23
5% critical values
no trend 1.27 1.19 1.1t 1.04 1.00 1.03 1.10 1.19 1.27 | 0.76
trend 0.83 0.78 0.72 0.67 0.64 0.67 0.72 0.78 0.82 | 0.53
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B. Extended Nelson-Plosser Data Set

7 (break fraction)

Variable | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mCU

RGNP 0.31 0.26 0.34 0.31 0.29 0.34 0.33 0.40 0.45 |0.%6
GNP 4.11% 0.49 0.24 0.40 O0.85*% 1.76% 2.24% 2.45% 2.98x% | 0.24
PCRGNP | 0.28 0.29 0.35 0.29 0.32 0.37 0.36 0.33 0.35 |0.28
IP 0.41 0.39 0.38 0.36 0.36 0.44 0.53 0.55 0.55 |0.36
EMP 0.37 0.35 0.31 0.28 0.49 0.42 0.38 0.39 0.40 |o0.28
UNEMP |0.48 0.36 0.41 0.62 0.51 0.37 0.42 0.48 0.47 |0.36
GNPDEF | 5.30% 5.10% 3.45% 0.41 1.45% 1.87% 1.64% 1.75% 0.74 0.41
CPI 5.40% 4.37x 3.47x 3.31% 2.17* 3.45% 3.34% 4.24% 5.80% | 2.17%
WAGE 3.85% 4.06x 0.36 0.26 1.14x 1.50% 2.03 2.32% 2.28x | 0.26
RWAGE | 3.45% 3.54x 3.24x 2.40x 0.31 0.39 0.47 0.45 0.49 |0.31
MONEY | 3.73% 2.85% 2.74*% 0.30 2.11x 2.46% 2.21x 2,10*% 2.36% | 0.30
VEL 2.63% 1.07x 0.65 0.46 0.33 0.39 0.51 0.51 1.43x%|0.33
BOND 4.84x 3.76% 0.88+ 0.37 0.24 0.25 0.24 0.32 0.80 |0.24
SP500 2.75% 1.09x 0.52 0.39 0.28 0.28 0.27 0.46 1.24x{0.27
QRGDP | 7.70% 7.26% 5.43% 0.49 1.77% 1.53% 1.65% 3.61% 7.02x | 0.49

5% critical values

notrend [1.27 1.19 1.11 1.04 1.00 1.03 1.10 1.19 1.27 |0.76
trend 0.83 0.78 0.72 0.67 0.64 0.67 0.72 0.78 0.82 |0.53

Note: A star (+) in this table indictes significance at 5%. However some of the tests may be

significant at a lower significance level.
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Table 6.4.2 Optimal Break Fraction

Nelson-Plosser Data Set | Extended Data Set

Variable CUSUM Perron CUSUM
RGNP 0.3 0.33 0.2
GNP 0.4 0.33 0.3
PCRGNP 0.3 0.33 0.1

1P 0.6 0.63 0.4
EMP 0.4 0.49 0.4
GNPDEF 0.5 0.49 0.4
CPI 0.3 0.63 0.5
WAGE 0.4 0.41 0.4
RWAGE 0.3 0.41 0.5
MONEY 0.5 0.49 0.4
VEL 0.5 0.59 0.5
BOND 0.5 0.41 0.5
SP500 0.7 0.59 0.7
QRGDP 0.4 NA NA

Note: The columns “CUSUM™ and “Perron™ are the optimal break fractions determined by our

mCU test and Perron (1989) respectively.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7

SUMMARY AND CONCLUSION

The purpose of this dissertation has been to develop several new tests for stationarity
and a new test for unit root. The tests developed in the previous chapters all have some

superior properties either in finite samples or in large samples.

A unit root process is equivalent to a stochastic trend. Therefore, tests for parameter
stability should have good power against unit root processes. In Chapter 3, for the case of
trending regressors, we derived the asymptotic distributions of the CUSUM test using OLS
residuals and of the parameter fluctuation test over subsamples. Simulation shows that these
two tests have good power against the unit root alternative. We also further developed the
CUSUM test when a break in the trend is allowed under the null hypothesis, and discussed the

issue of the “optimal” selection of the break point.

Beginning with Phillips (1987), in the context of test for unit root and stationarity, the
short run dynamics have been corrected by nonparametric methods. The nonparametric
estimation of the nuisance parameter (i. e. the long run variance) can crucially affect the finite
sample properties of the tests. The asymptotic distributions of the tests for stationarity are
often proportional to the square root of the long run variance. If, as suggested by Phillips
(1987) and Phillips and Perron (1988). the detrended series is used in the estimation of the long
run variance, the estimate diverges to infinity under unit root. Since the estimate of the long
run variance appears in the denominator of the tests statistics, the power of the tests is affected.

In Chapter 3, we propose an adaptive estimator of the long run variance that approaches a finite
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constant under both the null and the alternative. Therefore, the tests using our adaptive
estimator should have superior power. Simulation shows that indeed the power of the tests

improves when the adaptive estimator is used.

The finite sample properties of a consistent estimator of the long run variance can be
very poor. Therefore, when the estimate of the long run variance is used in constructing a test,
the outcome of the test may be dependent on the way the long run variance is estimated. In
Chapter 4, we generalize the Cauchy test of Bierens (1991a) to the case of a general
deterministic trend, possibly with breaks; several Cauchy tests were proposed. The Cauchy tests
avoid having to estimate the nuisance parameter. Although the test is constructed differently
depending on the nature of the deterministic trend, the asymptotic distribution under the null of
stationarity is always standard Cauchy. Simulation shows that the tests have weak power

against pure random walk alternatives, but good power against general unit root alternatives.

In Chapter 5, we propose another transformation of the Dickey-Fuller test for unit root.
Our proposed transformation is different from that of Phillips (1987) and Phillips and Perron
(1988) in that ours does not need the estimate of the long run variance. Given the problems
with most of the long run variance estimators in finite samples, our test can potentially behave

better in finite samples. We also discussed ways to enhance the power of the test.

In Chapter 6, all the new tests developed in the previous chapters were applied to the
extended Nelson-Plosser data set. While the CUSUM test and the Fluctuation test reject linear
trend stationarity for most of the time series, there is no evidence against stationarity around a
linear trend with an one-time break (except for the Consumer Price Index series). This lends

more support to the argument of Perron (1989) for a breaking trend characterization of most of

the historical macroeconomic time series.

The poor behavior of the existing long run variance estimators in finite samples

originates from the strong short run dependence (autocorrelation) in the time series. It seems
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more fruitful to model both the long run and the short run dynamics jointly. Since all the
distribution theories involving unit root processes are asymptotic, future research should pay

more attention to the quality of approximation to the distributions in finite samples.

As an extension of the unit root tests, the concept of cointegration, introduced by Engle
and Granger (1987), has been an active area of econometric research. While the modeling of
multiple time series using cointegration method is well developed, especially since the
publication of a series of papers by Johansen and coauthors (1988, 1990, 1991), introducing the

method of cointegration to panel data analysis is a challenging and fruitful area for future

research.
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